Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\( 4^{2x-3} = 7^x + 2^{x+2} \)[/tex], let's break it down step by step:
1. Rewrite the bases with exponents:
[tex]\[ 4^{2x-3} = (2^2)^{2x-3} = 2^{4x-6} \][/tex]
Similarly, for the right-hand side:
[tex]\[ 2^{x+2} = 2^x \cdot 2^2 = 4 \cdot 2^x \][/tex]
So the equation becomes:
[tex]\[ 2^{4x-6} = 7^x + 4 \cdot 2^x \][/tex]
2. Analyze possible solutions:
This is a transcendental equation, which means it typically does not have a straightforward analytical solution like algebraic equations. Instead, we often need numerical methods to find approximate solutions or argue about possible solutions by substituting feasible numbers.
3. Substitute potential solutions:
Let's test a few values of [tex]\( x \)[/tex] to see if we can find a solution:
- Test [tex]\( x = 0 \)[/tex]:
[tex]\[ 2^{4(0)-6} = 2^{-6} = \frac{1}{2^6} = \frac{1}{64} \][/tex]
[tex]\[ 7^0 + 4 \cdot 2^0 = 1 + 4 = 5 \][/tex]
Clearly, [tex]\( \frac{1}{64} \ne 5 \)[/tex].
- Test [tex]\( x = 1 \)[/tex]:
[tex]\[ 2^{4(1)-6} = 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \][/tex]
[tex]\[ 7^1 + 4 \cdot 2^1 = 7 + 8 = 15 \][/tex]
Again, [tex]\( \frac{1}{4} \ne 15 \)[/tex].
- Test [tex]\( x = 2 \)[/tex]:
[tex]\[ 2^{4(2)-6} = 2^2 = 4 \][/tex]
[tex]\[ 7^2 + 4 \cdot 2^2 = 49 + 16 = 65 \][/tex]
[tex]\( 4 \ne 65 \)[/tex].
- Test [tex]\( x = 3 \)[/tex]:
[tex]\[ 2^{4(3)-6} = 2^{12-6} = 2^6 = 64 \][/tex]
[tex]\[ 7^3 + 4 \cdot 2^3 = 343 + 4 \cdot 8 = 343 + 32 = 375 \][/tex]
[tex]\( 64 \ne 375 \)[/tex].
Given that simple values like 0, 1, 2, and 3 do not solve the equation, and the nature of the equation, we should generally expect that a transcendental equation like this will be best approached either graphically or with numerical methods (e.g., using a computer algebra system, iterative methods, or other numerical techniques).
Let's conclude by offering the observation that solving [tex]\( 2^{4x-6} = 7^x + 4 \cdot 2^x \)[/tex] exactly requires numerical methods due to its complexity. Graphically plotting [tex]\( y = 2^{4x-6} \)[/tex] and [tex]\( y = 7^x + 4 \cdot 2^x \)[/tex] would provide the intersection points, which provide the solutions for [tex]\( x \)[/tex]. From the attempts above, no simple analytical solution exists.
1. Rewrite the bases with exponents:
[tex]\[ 4^{2x-3} = (2^2)^{2x-3} = 2^{4x-6} \][/tex]
Similarly, for the right-hand side:
[tex]\[ 2^{x+2} = 2^x \cdot 2^2 = 4 \cdot 2^x \][/tex]
So the equation becomes:
[tex]\[ 2^{4x-6} = 7^x + 4 \cdot 2^x \][/tex]
2. Analyze possible solutions:
This is a transcendental equation, which means it typically does not have a straightforward analytical solution like algebraic equations. Instead, we often need numerical methods to find approximate solutions or argue about possible solutions by substituting feasible numbers.
3. Substitute potential solutions:
Let's test a few values of [tex]\( x \)[/tex] to see if we can find a solution:
- Test [tex]\( x = 0 \)[/tex]:
[tex]\[ 2^{4(0)-6} = 2^{-6} = \frac{1}{2^6} = \frac{1}{64} \][/tex]
[tex]\[ 7^0 + 4 \cdot 2^0 = 1 + 4 = 5 \][/tex]
Clearly, [tex]\( \frac{1}{64} \ne 5 \)[/tex].
- Test [tex]\( x = 1 \)[/tex]:
[tex]\[ 2^{4(1)-6} = 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \][/tex]
[tex]\[ 7^1 + 4 \cdot 2^1 = 7 + 8 = 15 \][/tex]
Again, [tex]\( \frac{1}{4} \ne 15 \)[/tex].
- Test [tex]\( x = 2 \)[/tex]:
[tex]\[ 2^{4(2)-6} = 2^2 = 4 \][/tex]
[tex]\[ 7^2 + 4 \cdot 2^2 = 49 + 16 = 65 \][/tex]
[tex]\( 4 \ne 65 \)[/tex].
- Test [tex]\( x = 3 \)[/tex]:
[tex]\[ 2^{4(3)-6} = 2^{12-6} = 2^6 = 64 \][/tex]
[tex]\[ 7^3 + 4 \cdot 2^3 = 343 + 4 \cdot 8 = 343 + 32 = 375 \][/tex]
[tex]\( 64 \ne 375 \)[/tex].
Given that simple values like 0, 1, 2, and 3 do not solve the equation, and the nature of the equation, we should generally expect that a transcendental equation like this will be best approached either graphically or with numerical methods (e.g., using a computer algebra system, iterative methods, or other numerical techniques).
Let's conclude by offering the observation that solving [tex]\( 2^{4x-6} = 7^x + 4 \cdot 2^x \)[/tex] exactly requires numerical methods due to its complexity. Graphically plotting [tex]\( y = 2^{4x-6} \)[/tex] and [tex]\( y = 7^x + 4 \cdot 2^x \)[/tex] would provide the intersection points, which provide the solutions for [tex]\( x \)[/tex]. From the attempts above, no simple analytical solution exists.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.