Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\(2^x + 2^{x+1} + 2^{x+2} + 2^{x+3} = 60\)[/tex], let's go through a detailed, step-by-step explanation:
1. Combine the terms with the same base:
We notice that each term on the left-hand side of the equation is a power of 2 where each exponent is increased by 1 in each subsequent term.
2. Factor out [tex]\(2^x\)[/tex] from the left-hand side:
[tex]\[ 2^x + 2^{x+1} + 2^{x+2} + 2^{x+3} = 60 \][/tex]
This can be written as:
[tex]\[ 2^x (1 + 2 + 2^2 + 2^3) \][/tex]
3. Simplify inside the parentheses:
Calculate [tex]\(1 + 2 + 4 + 8\)[/tex]:
[tex]\[ 1 + 2 + 4 + 8 = 15 \][/tex]
4. Rewrite the equation:
[tex]\[ 2^x \cdot 15 = 60 \][/tex]
5. Isolate [tex]\(2^x\)[/tex]:
Divide both sides of the equation by 15:
[tex]\[ 2^x = \frac{60}{15} \][/tex]
Simplify the division:
[tex]\[ 2^x = 4 \][/tex]
6. Express 4 as a power of 2:
Recall that [tex]\(4 = 2^2\)[/tex], so:
[tex]\[ 2^x = 2^2 \][/tex]
7. Equate the exponents (since the bases are the same):
Therefore, we have:
[tex]\[ x = 2 \][/tex]
Considering the provided choices:
a. 00
b. 1
c. 2
d. 4
The correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. Combine the terms with the same base:
We notice that each term on the left-hand side of the equation is a power of 2 where each exponent is increased by 1 in each subsequent term.
2. Factor out [tex]\(2^x\)[/tex] from the left-hand side:
[tex]\[ 2^x + 2^{x+1} + 2^{x+2} + 2^{x+3} = 60 \][/tex]
This can be written as:
[tex]\[ 2^x (1 + 2 + 2^2 + 2^3) \][/tex]
3. Simplify inside the parentheses:
Calculate [tex]\(1 + 2 + 4 + 8\)[/tex]:
[tex]\[ 1 + 2 + 4 + 8 = 15 \][/tex]
4. Rewrite the equation:
[tex]\[ 2^x \cdot 15 = 60 \][/tex]
5. Isolate [tex]\(2^x\)[/tex]:
Divide both sides of the equation by 15:
[tex]\[ 2^x = \frac{60}{15} \][/tex]
Simplify the division:
[tex]\[ 2^x = 4 \][/tex]
6. Express 4 as a power of 2:
Recall that [tex]\(4 = 2^2\)[/tex], so:
[tex]\[ 2^x = 2^2 \][/tex]
7. Equate the exponents (since the bases are the same):
Therefore, we have:
[tex]\[ x = 2 \][/tex]
Considering the provided choices:
a. 00
b. 1
c. 2
d. 4
The correct answer is:
[tex]\[ \boxed{2} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.