Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which function best models the population of butterflies [tex]\( x \)[/tex] years from the first measurement, we start by considering the given conditions:
- Initial population ([tex]\( P_{0} \)[/tex]): 2000 butterflies
- Final population ([tex]\( P_{f} \)[/tex]): 2800 butterflies
- Time span ([tex]\( t \)[/tex]): 7 years
We need to evaluate each function and see which one produces values that reasonably match the population growth from 2000 to 2800 over the 7-year period.
### Option A: [tex]\( f(x) = 2000 \left( 1 + 0.4 \right)^{\frac{x}{7}} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4 \right)^{\frac{1}{7}} \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.049 \][/tex]
[tex]\[ f(1) \approx 2098.483 \][/tex]
### Option B: [tex]\( f(x) = 2000 \left( 1 + 0.4^7 \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4^7 \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.00164 \][/tex]
[tex]\[ f(1) \approx 2003.2768 \][/tex]
### Option C: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.05714 \][/tex]
[tex]\[ f(1) \approx 2114.286 \][/tex]
### Option D: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^7 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.475 \][/tex]
[tex]\[ f(1) \approx 2950.977 \][/tex]
### Conclusion:
Given that the butterfly population grows from 2000 to 2800 over 7 years, we are looking for a model that captures a significant increase over time. From our evaluations:
- Option A: [tex]\( \approx 2098.483 \)[/tex]
- Option B: [tex]\( \approx 2003.2768 \)[/tex]
- Option C: [tex]\( \approx 2114.286 \)[/tex]
- Option D: [tex]\( \approx 2950.977 \)[/tex]
Model [tex]\( D \)[/tex] estimates a final population of approximately 2950.977, which is the closest to the actual final population of 2800. Therefore, the best function that models the population is:
[tex]\[ f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \][/tex]
- Initial population ([tex]\( P_{0} \)[/tex]): 2000 butterflies
- Final population ([tex]\( P_{f} \)[/tex]): 2800 butterflies
- Time span ([tex]\( t \)[/tex]): 7 years
We need to evaluate each function and see which one produces values that reasonably match the population growth from 2000 to 2800 over the 7-year period.
### Option A: [tex]\( f(x) = 2000 \left( 1 + 0.4 \right)^{\frac{x}{7}} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4 \right)^{\frac{1}{7}} \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.049 \][/tex]
[tex]\[ f(1) \approx 2098.483 \][/tex]
### Option B: [tex]\( f(x) = 2000 \left( 1 + 0.4^7 \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + 0.4^7 \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.00164 \][/tex]
[tex]\[ f(1) \approx 2003.2768 \][/tex]
### Option C: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^x \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^1 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.05714 \][/tex]
[tex]\[ f(1) \approx 2114.286 \][/tex]
### Option D: [tex]\( f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \)[/tex]
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2000 \left( 1 + \frac{0.4}{7} \right)^7 \][/tex]
[tex]\[ f(1) \approx 2000 \times 1.475 \][/tex]
[tex]\[ f(1) \approx 2950.977 \][/tex]
### Conclusion:
Given that the butterfly population grows from 2000 to 2800 over 7 years, we are looking for a model that captures a significant increase over time. From our evaluations:
- Option A: [tex]\( \approx 2098.483 \)[/tex]
- Option B: [tex]\( \approx 2003.2768 \)[/tex]
- Option C: [tex]\( \approx 2114.286 \)[/tex]
- Option D: [tex]\( \approx 2950.977 \)[/tex]
Model [tex]\( D \)[/tex] estimates a final population of approximately 2950.977, which is the closest to the actual final population of 2800. Therefore, the best function that models the population is:
[tex]\[ f(x) = 2000 \left( 1 + \frac{0.4}{7} \right)^{7x} \][/tex]
Answer:
A. [tex] f(x) = 2000(1 + 0.4)^{\frac{1}{7}x} [/tex]
Step-by-step explanation:
The number of years we know about is 7, so x = 7.
[tex] f(x) = 2000(1 + 0.4)^{\frac{1}{7}x} [/tex]
[tex] f(x) = 2000(1.4)^{\frac{1}{7} \times 7} [/tex]
[tex] f(x) = 2000(1.4)^{1} [/tex]
[tex] f(x) = 2000(1.4) [/tex]
[tex] f(x) = 2800 [/tex]
Answer: Choice A.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.