Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\( f(x) = 0 \)[/tex], where [tex]\( f(x) = 16x^4 - 81 \)[/tex], we will follow these steps:
1. Start with the given equation:
[tex]\[ 16x^4 - 81 = 0 \][/tex]
2. Add 81 to both sides of the equation to isolate the quartic term:
[tex]\[ 16x^4 = 81 \][/tex]
3. Divide both sides by 16 to solve for [tex]\( x^4 \)[/tex]:
[tex]\[ x^4 = \frac{81}{16} \][/tex]
4. Take the fourth root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt[4]{\frac{81}{16}} \][/tex]
5. Simplify the expression under the fourth root:
[tex]\[ x = \pm \sqrt[4]{\left(\frac{9}{4}\right)^2} \][/tex]
6. Since [tex]\(\sqrt[4]{a^2} = \sqrt{a}\)[/tex], we get:
[tex]\[ x = \pm \sqrt{\frac{9}{4}} = \pm \frac{3}{2} \][/tex]
Thus, we have two real solutions:
[tex]\[ x = \frac{3}{2} \quad \text{and} \quad x = -\frac{3}{2} \][/tex]
7. Consider the complex roots by recognizing that taking the fourth root in the complex plane also gives complex solutions:
[tex]\[ x = \pm \frac{3i}{2} \][/tex]
So, the complete solution set for the equation is:
[tex]\[ x = \frac{3}{2}, \quad x = -\frac{3}{2}, \quad x = \frac{3i}{2}, \quad x = -\frac{3i}{2} \][/tex]
Hence, the final solutions to the equation [tex]\( 16x^4 - 81 = 0 \)[/tex] are:
[tex]\[ -\frac{3}{2}, \frac{3}{2}, -\frac{3i}{2}, \frac{3i}{2} \][/tex]
1. Start with the given equation:
[tex]\[ 16x^4 - 81 = 0 \][/tex]
2. Add 81 to both sides of the equation to isolate the quartic term:
[tex]\[ 16x^4 = 81 \][/tex]
3. Divide both sides by 16 to solve for [tex]\( x^4 \)[/tex]:
[tex]\[ x^4 = \frac{81}{16} \][/tex]
4. Take the fourth root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt[4]{\frac{81}{16}} \][/tex]
5. Simplify the expression under the fourth root:
[tex]\[ x = \pm \sqrt[4]{\left(\frac{9}{4}\right)^2} \][/tex]
6. Since [tex]\(\sqrt[4]{a^2} = \sqrt{a}\)[/tex], we get:
[tex]\[ x = \pm \sqrt{\frac{9}{4}} = \pm \frac{3}{2} \][/tex]
Thus, we have two real solutions:
[tex]\[ x = \frac{3}{2} \quad \text{and} \quad x = -\frac{3}{2} \][/tex]
7. Consider the complex roots by recognizing that taking the fourth root in the complex plane also gives complex solutions:
[tex]\[ x = \pm \frac{3i}{2} \][/tex]
So, the complete solution set for the equation is:
[tex]\[ x = \frac{3}{2}, \quad x = -\frac{3}{2}, \quad x = \frac{3i}{2}, \quad x = -\frac{3i}{2} \][/tex]
Hence, the final solutions to the equation [tex]\( 16x^4 - 81 = 0 \)[/tex] are:
[tex]\[ -\frac{3}{2}, \frac{3}{2}, -\frac{3i}{2}, \frac{3i}{2} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.