Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve each part step-by-step.
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form
First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].
Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].
Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].
Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]
So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]
### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]
Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]
From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]
Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]
Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]
So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]
### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form
To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]
For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]
Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]
Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]
So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]
### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule
Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]
Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]
Where [tex]\( A \)[/tex] is the coefficient matrix:
[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]
The determinants are calculated as follows:
1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]
2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]
3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]
Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]
So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.