Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

QUESTION 2

2.1 Simplify to rectangular form and show all intermediate steps:

[tex]\[ 3j^{12} + 2j^{23} \][/tex]

2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if:

[tex]\[ \left(\frac{a}{b}\right) + j(a - b) = 7 + 2j \][/tex]

2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form. [tex]\(\theta\)[/tex] must be positive.

2.4 Solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's rule only:

[tex]\[
\begin{array}{l}
5x + 2y = -19 \\
3x + 4y = -17
\end{array}
\][/tex]

[20 marks]


Sagot :

Sure, let's solve each part step-by-step.

### 2.1 Simplify [tex]\(3 j^{12} + 2 j^{23}\)[/tex] to rectangular form

First, recall that [tex]\( j \)[/tex] is the imaginary unit, defined as [tex]\( j = \sqrt{-1} \)[/tex].

Here's a useful cycle for powers of [tex]\( j \)[/tex]:
- [tex]\( j^1 = j \)[/tex]
- [tex]\( j^2 = -1 \)[/tex]
- [tex]\( j^3 = -j \)[/tex]
- [tex]\( j^4 = 1 \)[/tex]
- This cycle repeats every 4, so [tex]\( j^n = j^{(n \mod 4)} \)[/tex].

Now let's simplify:
- [tex]\( j^{12} \)[/tex]: [tex]\( 12 \mod 4 = 0 \)[/tex] (remainder is 0), so [tex]\( j^{12} = j^0 = 1 \)[/tex].
- [tex]\( j^{23} \)[/tex]: [tex]\( 23 \mod 4 = 3 \)[/tex] (remainder is 3), so [tex]\( j^{23} = j^3 = -j \)[/tex].

Substitute back into the expression:
[tex]\[ 3 j^{12} + 2 j^{23} = 3 \cdot 1 + 2 \cdot (-j) = 3 - 2j \][/tex]

So, the rectangular form of [tex]\( 3 j^{12} + 2 j^{23} \)[/tex] is:
[tex]\[ \boxed{3 - 2j} \][/tex]

### 2.2 Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] if [tex]\( \frac{a}{b} + j(a - b) = 7 + 2j \)[/tex]

Equate the real and imaginary parts on both sides of the equation:
[tex]\[ \text{Real part: } \frac{a}{b} = 7 \][/tex]
[tex]\[ \text{Imaginary part: } a - b = 2 \][/tex]

From the real part:
[tex]\[ \frac{a}{b} = 7 \implies a = 7b \][/tex]

Substitute [tex]\(a = 7b\)[/tex] into the imaginary part:
[tex]\[ 7b - b = 2 \implies 6b = 2 \implies b = \frac{2}{6} = \frac{1}{3} \][/tex]

Now substitute [tex]\(b = \frac{1}{3}\)[/tex] back to find [tex]\(a\)[/tex]:
[tex]\[ a = 7b = 7 \times \frac{1}{3} = \frac{7}{3} \][/tex]

So, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \boxed{a = \frac{7}{3}, \quad b = \frac{1}{3}} \][/tex]

### 2.3 Convert [tex]\(12 - 5j\)[/tex] to polar form

To convert a complex number [tex]\(z = a + bj\)[/tex] to polar form, use the formula:
[tex]\[ r = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ \theta = \arctan\left(\frac{b}{a}\right) \text{ (in radians)} \][/tex]

For [tex]\(z = 12 - 5j\)[/tex]:
- [tex]\(a = 12\)[/tex]
- [tex]\(b = -5\)[/tex]

Calculate [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]

Calculate [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{-5}{12}\right) \][/tex]
[tex]\[ \theta \approx \arctan\left(-0.4167\right) \][/tex]
[tex]\[ \theta \approx -0.3927 \text{ radians} \][/tex]

Since we want [tex]\( \theta \)[/tex] to be positive:
[tex]\[ \theta = 2\pi - 0.3927 \approx 5.8905 \text{ radians} \][/tex]

So the polar form of [tex]\(12 - 5j\)[/tex] is:
[tex]\[ \boxed{(13, 5.8905)} \][/tex]

### 2.4 Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's rule

Given the system of linear equations:
[tex]\[ 5x + 2y = -19 \][/tex]
[tex]\[ 3x + 4y = -17 \][/tex]

Cramer's rule states that for a system [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex]:
[tex]\[ x = \frac{\det(A_x)}{\det(A)}, \quad y = \frac{\det(A_y)}{\det(A)} \][/tex]

Where [tex]\( A \)[/tex] is the coefficient matrix:

[tex]\[ A = \begin{pmatrix} 5 & 2 \\ 3 & 4 \end{pmatrix} \][/tex]

The determinants are calculated as follows:

1. [tex]\( \det(A) = (5 \cdot 4) - (2 \cdot 3) = 20 - 6 = 14 \)[/tex]

2. [tex]\( \det(A_x) \)[/tex] replaces the first column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:

[tex]\[ A_x = \begin{pmatrix} -19 & 2 \\ -17 & 4 \end{pmatrix} \][/tex]

[tex]\[ \det(A_x) = (-19 \cdot 4) - (2 \cdot -17) = -76 + 34 = -42 \][/tex]

3. [tex]\( \det(A_y) \)[/tex] replaces the second column of [tex]\( A \)[/tex] with vector [tex]\( B \)[/tex]:

[tex]\[ A_y = \begin{pmatrix} 5 & -19 \\ 3 & -17 \end{pmatrix} \][/tex]

[tex]\[ \det(A_y) = (5 \cdot -17) - (3 \cdot -19) = -85 + 57 = -28 \][/tex]

Now compute [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-42}{14} = -3 \][/tex]

[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-28}{14} = -2 \][/tex]

So, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -3, \quad y = -2} \][/tex]