Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The quadratic equation

[tex]\[ x^2 - 4k \sqrt{2} x + 2k^4 - 1 = 0 \][/tex]

where [tex]\( k \)[/tex] is a positive constant, has roots [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].

Given that [tex]\( \alpha^2 + \beta^2 = 66 \)[/tex] and that [tex]\( \alpha^3 + \beta^3 = p \sqrt{2} \)[/tex] where [tex]\( p \)[/tex] is an integer, find the value of [tex]\( p \)[/tex].


Sagot :

Let's start with the quadratic equation:
[tex]\[ x^2 - 4k\sqrt{2} x + 2k^4 - 1 = 0 \][/tex]
where [tex]\( k \)[/tex] is a positive constant, and the roots are given as [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex].

### Step 1: Relation between the roots and coefficients

Using Vieta's formulas for the quadratic equations:
1. Sum of the roots ([tex]\(\alpha + \beta\)[/tex]):
[tex]\[ \alpha + \beta = 4k\sqrt{2} \][/tex]
2. Product of the roots ([tex]\(\alpha\beta\)[/tex]):
[tex]\[ \alpha \beta = 2k^4 - 1 \][/tex]

### Step 2: Given condition on the sum of squares of the roots
We are given:
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]

Using the identity [tex]\(\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta\)[/tex], we substitute the values obtained from Vieta's formulas:
[tex]\[ \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(\alpha\beta) \][/tex]
[tex]\[ 66 = 16k^2 \cdot 2 - 2(2k^4 - 1) \][/tex]
[tex]\[ 66 = 32k^2 - 4k^4 + 2 \][/tex]
[tex]\[ 64 = 32k^2 - 4k^4 \][/tex]
[tex]\[ 4k^4 - 32k^2 + 64 = 0 \][/tex]

### Step 3: Solve for [tex]\(k\)[/tex]

Divide the entire equation by 4:
[tex]\[ k^4 - 8k^2 + 16 = 0 \][/tex]

This can be treated as a quadratic in terms of [tex]\( k^2 \)[/tex]. Let [tex]\( y = k^2 \)[/tex]:
[tex]\[ y^2 - 8y + 16 = 0 \][/tex]

Solve the quadratic equation:
[tex]\[ y = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8 \pm 0}{2} = 4 \][/tex]

Thus:
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = 2 \][/tex]
(Because [tex]\( k \)[/tex] is a positive constant)

### Step 4: Finding [tex]\( \alpha^3 + \beta^3 = p\sqrt{2} \)[/tex]
We use the identity:
[tex]\[ \alpha^3 + \beta^3 = (\alpha + \beta)((\alpha^2 + \beta^2) - \alpha\beta) \][/tex]

Substitute the known values:
[tex]\[ \alpha + \beta = 4k\sqrt{2} = 4 \cdot 2 \sqrt{2} = 8\sqrt{2} \][/tex]
[tex]\[ \alpha^2 + \beta^2 = 66 \][/tex]
[tex]\[ \alpha\beta = 2k^4 - 1 = 2 \cdot 2^4 - 1 = 31 \][/tex]

Then:
[tex]\[ \alpha^3 + \beta^3 = (8\sqrt{2}) \left(66 - 31\right) \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 8\sqrt{2} \cdot 35 \][/tex]
[tex]\[ \alpha^3 + \beta^3 = 280\sqrt{2} \][/tex]

Since it is given that [tex]\(\alpha^3 + \beta^3 = p\sqrt{2}\)[/tex], we compare:
[tex]\[ 280\sqrt{2} = p\sqrt{2} \][/tex]

Thus:
[tex]\[ p = 280 \][/tex]

The value of [tex]\( p \)[/tex] is:
[tex]\[ \boxed{280} \][/tex]