Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the minimum score needed to be in the top 14% of a normal distribution with a mean of 24 and a standard deviation of 3, we can follow these detailed steps:
1. Understand the Problem: We are dealing with a normal distribution, and we need to find the score that separates the top 14% from the rest. This score is also known as the percentile rank.
2. Find the Z-Score for the Top 14%:
- The top 14% means we are looking for the value that leaves 14% of the distribution to its right.
- In a standard normal distribution (mean = 0, standard deviation = 1), the z-score corresponding to the top 14% can be found using statistical tables or functions from statistical software.
3. Use the Z-Score Formula:
- For a normal distribution, the z-score formula is:
[tex]\[ Z = \frac{(X - \mu)}{\sigma} \][/tex]
where [tex]\(Z\)[/tex] is the z-score, [tex]\(X\)[/tex] is the value we need to find, [tex]\( \mu \)[/tex] is the mean, and [tex]\( \sigma \)[/tex] is the standard deviation.
- Rearranging this formula to solve for [tex]\(X\)[/tex], we get:
[tex]\[ X = \mu + Z \cdot \sigma \][/tex]
4. Apply the Given Values:
- The mean [tex]\( \mu \)[/tex] is 24.
- The standard deviation [tex]\( \sigma \)[/tex] is 3.
- The z-score corresponding to the top 14% is approximately 1.08. (This z-score tells us how many standard deviations the required score is above the mean.)
5. Calculate the Minimum Score:
- Plugging the values into the formula, we get:
[tex]\[ X = 24 + 1.08 \cdot 3 \][/tex]
[tex]\[ X \approx 24 + 3.24 \][/tex]
[tex]\[ X \approx 27.24 \][/tex]
6. Conclusion:
- The minimum score needed to be in the top 14% of this normal distribution is approximately 27.24.
So, the correct answer is:
- OC. X = 27.24
1. Understand the Problem: We are dealing with a normal distribution, and we need to find the score that separates the top 14% from the rest. This score is also known as the percentile rank.
2. Find the Z-Score for the Top 14%:
- The top 14% means we are looking for the value that leaves 14% of the distribution to its right.
- In a standard normal distribution (mean = 0, standard deviation = 1), the z-score corresponding to the top 14% can be found using statistical tables or functions from statistical software.
3. Use the Z-Score Formula:
- For a normal distribution, the z-score formula is:
[tex]\[ Z = \frac{(X - \mu)}{\sigma} \][/tex]
where [tex]\(Z\)[/tex] is the z-score, [tex]\(X\)[/tex] is the value we need to find, [tex]\( \mu \)[/tex] is the mean, and [tex]\( \sigma \)[/tex] is the standard deviation.
- Rearranging this formula to solve for [tex]\(X\)[/tex], we get:
[tex]\[ X = \mu + Z \cdot \sigma \][/tex]
4. Apply the Given Values:
- The mean [tex]\( \mu \)[/tex] is 24.
- The standard deviation [tex]\( \sigma \)[/tex] is 3.
- The z-score corresponding to the top 14% is approximately 1.08. (This z-score tells us how many standard deviations the required score is above the mean.)
5. Calculate the Minimum Score:
- Plugging the values into the formula, we get:
[tex]\[ X = 24 + 1.08 \cdot 3 \][/tex]
[tex]\[ X \approx 24 + 3.24 \][/tex]
[tex]\[ X \approx 27.24 \][/tex]
6. Conclusion:
- The minimum score needed to be in the top 14% of this normal distribution is approximately 27.24.
So, the correct answer is:
- OC. X = 27.24
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.