Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the mean and standard deviation of the random variable [tex]\( x \)[/tex], we will follow these steps:
### Mean
The mean (or expected value) of a random variable [tex]\( x \)[/tex] is calculated using the formula:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
where [tex]\( x_i \)[/tex] are the values of the random variable and [tex]\( P(x_i) \)[/tex] are the corresponding probabilities.
Given the values:
- [tex]\( x \)[/tex] = [tex]\( \{0, 1, 2, 3, 4\} \)[/tex]
- [tex]\( P(x) \)[/tex] = [tex]\( \left\{\frac{3}{17}, \frac{5}{17}, \frac{6}{17}, \frac{2}{17}, \frac{1}{17} \right\} \)[/tex]
We calculate the mean as follows:
[tex]\[ \mu = (0 \cdot \frac{3}{17}) + (1 \cdot \frac{5}{17}) + (2 \cdot \frac{6}{17}) + (3 \cdot \frac{2}{17}) + (4 \cdot \frac{1}{17}) \][/tex]
[tex]\[ \mu = 0 + \left(\frac{5}{17}\right) + \left(\frac{12}{17}\right) + \left(\frac{6}{17}\right) + \left(\frac{4}{17}\right) \][/tex]
[tex]\[ \mu = \frac{5 + 12 + 6 + 4}{17} = \frac{27}{17} \approx 1.59 \][/tex]
So, the mean is:
[tex]\[ \text{mean} = 1.59 \][/tex]
### Standard Deviation
The standard deviation is the square root of the variance. The variance ([tex]\( \sigma^2 \)[/tex]) is calculated using the formula:
[tex]\[ \sigma^2 = \sum (P(x_i) \cdot (x_i - \mu)^2) \][/tex]
To find the variance, we need the values of [tex]\( (x_i - \mu)^2 \)[/tex]:
[tex]\[ (0 - 1.59)^2 = 2.5281 \][/tex]
[tex]\[ (1 - 1.59)^2 = 0.3481 \][/tex]
[tex]\[ (2 - 1.59)^2 = 0.1681 \][/tex]
[tex]\[ (3 - 1.59)^2 = 2.0161 \][/tex]
[tex]\[ (4 - 1.59)^2 = 5.8561 \][/tex]
Now we calculate the variance:
[tex]\[ \sigma^2 = ( \frac{3}{17} \cdot 2.5281 ) + ( \frac{5}{17} \cdot 0.3481 ) + ( \frac{6}{17} \cdot 0.1681 ) + ( \frac{2}{17} \cdot 2.0161 ) + ( \frac{1}{17} \cdot 5.8561 ) \][/tex]
[tex]\[ \sigma^2 = \left( \frac{7.5843}{17} \right) + \left( \frac{1.7405}{17} \right) + \left( \frac{1.0086}{17} \right) + \left( \frac{4.0322}{17} \right) + \left( \frac{5.8561}{17} \right) \][/tex]
[tex]\[ \sigma^2 = \frac{7.5843 + 1.7405 + 1.0086 + 4.0322 + 5.8561}{17} = \frac{20.2217}{17} \approx 1.189 \][/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{1.189} \approx 1.09 \][/tex]
So, the standard deviation is:
[tex]\[ \text{standard deviation} = 1.09 \][/tex]
### Answers
a) Mean [tex]\( = 1.59 \)[/tex]
b) Standard Deviation [tex]\( = 1.09 \)[/tex]
### Mean
The mean (or expected value) of a random variable [tex]\( x \)[/tex] is calculated using the formula:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
where [tex]\( x_i \)[/tex] are the values of the random variable and [tex]\( P(x_i) \)[/tex] are the corresponding probabilities.
Given the values:
- [tex]\( x \)[/tex] = [tex]\( \{0, 1, 2, 3, 4\} \)[/tex]
- [tex]\( P(x) \)[/tex] = [tex]\( \left\{\frac{3}{17}, \frac{5}{17}, \frac{6}{17}, \frac{2}{17}, \frac{1}{17} \right\} \)[/tex]
We calculate the mean as follows:
[tex]\[ \mu = (0 \cdot \frac{3}{17}) + (1 \cdot \frac{5}{17}) + (2 \cdot \frac{6}{17}) + (3 \cdot \frac{2}{17}) + (4 \cdot \frac{1}{17}) \][/tex]
[tex]\[ \mu = 0 + \left(\frac{5}{17}\right) + \left(\frac{12}{17}\right) + \left(\frac{6}{17}\right) + \left(\frac{4}{17}\right) \][/tex]
[tex]\[ \mu = \frac{5 + 12 + 6 + 4}{17} = \frac{27}{17} \approx 1.59 \][/tex]
So, the mean is:
[tex]\[ \text{mean} = 1.59 \][/tex]
### Standard Deviation
The standard deviation is the square root of the variance. The variance ([tex]\( \sigma^2 \)[/tex]) is calculated using the formula:
[tex]\[ \sigma^2 = \sum (P(x_i) \cdot (x_i - \mu)^2) \][/tex]
To find the variance, we need the values of [tex]\( (x_i - \mu)^2 \)[/tex]:
[tex]\[ (0 - 1.59)^2 = 2.5281 \][/tex]
[tex]\[ (1 - 1.59)^2 = 0.3481 \][/tex]
[tex]\[ (2 - 1.59)^2 = 0.1681 \][/tex]
[tex]\[ (3 - 1.59)^2 = 2.0161 \][/tex]
[tex]\[ (4 - 1.59)^2 = 5.8561 \][/tex]
Now we calculate the variance:
[tex]\[ \sigma^2 = ( \frac{3}{17} \cdot 2.5281 ) + ( \frac{5}{17} \cdot 0.3481 ) + ( \frac{6}{17} \cdot 0.1681 ) + ( \frac{2}{17} \cdot 2.0161 ) + ( \frac{1}{17} \cdot 5.8561 ) \][/tex]
[tex]\[ \sigma^2 = \left( \frac{7.5843}{17} \right) + \left( \frac{1.7405}{17} \right) + \left( \frac{1.0086}{17} \right) + \left( \frac{4.0322}{17} \right) + \left( \frac{5.8561}{17} \right) \][/tex]
[tex]\[ \sigma^2 = \frac{7.5843 + 1.7405 + 1.0086 + 4.0322 + 5.8561}{17} = \frac{20.2217}{17} \approx 1.189 \][/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{1.189} \approx 1.09 \][/tex]
So, the standard deviation is:
[tex]\[ \text{standard deviation} = 1.09 \][/tex]
### Answers
a) Mean [tex]\( = 1.59 \)[/tex]
b) Standard Deviation [tex]\( = 1.09 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.