Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! To determine the degree of a polynomial, we look at each term separately and find the sum of the exponents for each variable within a term. The polynomial given is:
[tex]\[ 13x^7yz - 7x^5y^2 + x^4yz^3 \][/tex]
Let's break this down term by term:
1. First term: [tex]\( 13x^7yz \)[/tex]
- The degree of [tex]\( x \)[/tex] is 7.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 1.
- The sum of these degrees is [tex]\( 7 + 1 + 1 = 9 \)[/tex].
2. Second term: [tex]\( -7x^5y^2 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 5.
- The degree of [tex]\( y \)[/tex] is 2.
- The degree of [tex]\( z \)[/tex] is 0 (since [tex]\( z \)[/tex] does not appear in this term).
- The sum of these degrees is [tex]\( 5 + 2 = 7 \)[/tex].
3. Third term: [tex]\( x^4yz^3 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 4.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 3.
- The sum of these degrees is [tex]\( 4 + 1 + 3 = 8 \)[/tex].
Now, we need to find the degree of the entire polynomial, which is the highest degree among all its terms. Thus, we compare the degrees calculated:
- Degree of [tex]\( 13x^7yz \)[/tex] is 9.
- Degree of [tex]\( -7x^5y^2 \)[/tex] is 7.
- Degree of [tex]\( x^4yz^3 \)[/tex] is 8.
The highest degree is 9.
Therefore, the degree of the polynomial [tex]\( 13x^7yz - 7x^5y^2 + x^4yz^3 \)[/tex] is [tex]\( 9 \)[/tex].
[tex]\[ 13x^7yz - 7x^5y^2 + x^4yz^3 \][/tex]
Let's break this down term by term:
1. First term: [tex]\( 13x^7yz \)[/tex]
- The degree of [tex]\( x \)[/tex] is 7.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 1.
- The sum of these degrees is [tex]\( 7 + 1 + 1 = 9 \)[/tex].
2. Second term: [tex]\( -7x^5y^2 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 5.
- The degree of [tex]\( y \)[/tex] is 2.
- The degree of [tex]\( z \)[/tex] is 0 (since [tex]\( z \)[/tex] does not appear in this term).
- The sum of these degrees is [tex]\( 5 + 2 = 7 \)[/tex].
3. Third term: [tex]\( x^4yz^3 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 4.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 3.
- The sum of these degrees is [tex]\( 4 + 1 + 3 = 8 \)[/tex].
Now, we need to find the degree of the entire polynomial, which is the highest degree among all its terms. Thus, we compare the degrees calculated:
- Degree of [tex]\( 13x^7yz \)[/tex] is 9.
- Degree of [tex]\( -7x^5y^2 \)[/tex] is 7.
- Degree of [tex]\( x^4yz^3 \)[/tex] is 8.
The highest degree is 9.
Therefore, the degree of the polynomial [tex]\( 13x^7yz - 7x^5y^2 + x^4yz^3 \)[/tex] is [tex]\( 9 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.