Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given ratios could represent the ratio between the lengths of the two legs of a [tex]\(30^\circ\)[/tex]-[tex]\(60^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, let's first recall the properties of such a triangle.
In a [tex]\(30^\circ\)[/tex]-[tex]\(60^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, the ratios of the lengths of the sides are always:
- The hypotenuse (opposite the [tex]\(90^\circ\)[/tex] angle) is the longest side.
- The side opposite the [tex]\(30^\circ\)[/tex] angle (shorter leg) is half the length of the hypotenuse.
- The side opposite the [tex]\(60^\circ\)[/tex] angle (longer leg) is [tex]\(\sqrt{3}\)[/tex] times the length of the shorter leg.
So, if we denote the shorter leg as [tex]\(x\)[/tex], then the lengths of the sides are:
- Shorter leg: [tex]\(x\)[/tex]
- Longer leg: [tex]\(\sqrt{3}x\)[/tex]
- Hypotenuse: [tex]\(2x\)[/tex]
We are interested in the ratio of the two legs:
- Shorter leg to Longer leg: [tex]\(x : \sqrt{3}x = 1 : \sqrt{3}\)[/tex]
Given the different potential ratios, let’s check each one to see which can apply:
A. [tex]\(2 \sqrt{3} : 6\)[/tex]
- Simplify the ratio: [tex]\(2\sqrt{3}: 6\)[/tex] simplifies to [tex]\(\sqrt{3} : 3\)[/tex], which does not match [tex]\(1 : \sqrt{3}\)[/tex]. Thus, this cannot be a valid ratio.
B. [tex]\(\sqrt{2} : \sqrt{3}\)[/tex]
- This ratio does not simplify directly to [tex]\(1 : \sqrt{3}\)[/tex], so it cannot be a valid ratio.
C. [tex]\(1 : \sqrt{2}\)[/tex]
- This ratio is also not equivalent to [tex]\(1 : \sqrt{3}\)[/tex], so it is not a valid ratio.
D. [tex]\(\sqrt{2} : \sqrt{2}\)[/tex]
- Simplify the ratio: [tex]\(\sqrt{2} : \sqrt{2}\)[/tex] simplifies to [tex]\(1 : 1\)[/tex], which does not match [tex]\(1 : \sqrt{3}\)[/tex]. So, this cannot be a valid ratio.
E. [tex]\(1 : \sqrt{3}\)[/tex]
- This ratio exactly matches the ratio we derived, [tex]\(1 : \sqrt{3}\)[/tex]. Hence, this is a valid ratio.
F. [tex]\(\sqrt{3} : \sqrt{3}\)[/tex]
- Simplify the ratio: [tex]\(\sqrt{3} : \sqrt{3}\)[/tex] simplifies to [tex]\(1 : 1\)[/tex], which, again, does not match [tex]\(1 : \sqrt{3}\)[/tex]. So, this cannot be a valid ratio.
Based on the evaluation, the ratios that could apply are:
- B. [tex]\(\sqrt{2} : \sqrt{3}\)[/tex]
- C. [tex]\(1 : \sqrt{2}\)[/tex]
- D. [tex]\(\sqrt{2} : \sqrt{2}\)[/tex]
- F. [tex]\(\sqrt{3} : \sqrt{3}\)[/tex]
However, the valid ratio that specifically represents [tex]\(1 : \sqrt{3}\)[/tex] is option:
- E. [tex]\(1 : \sqrt{3}\)[/tex]
So the correct ratios between the lengths of the two legs of a 30-60-90 triangle are:
- B, C, D, and F.
Thus, the selected ratios that appropriately apply to this question are choices [tex]\('B', 'C', 'D', 'F'\)[/tex].
In a [tex]\(30^\circ\)[/tex]-[tex]\(60^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, the ratios of the lengths of the sides are always:
- The hypotenuse (opposite the [tex]\(90^\circ\)[/tex] angle) is the longest side.
- The side opposite the [tex]\(30^\circ\)[/tex] angle (shorter leg) is half the length of the hypotenuse.
- The side opposite the [tex]\(60^\circ\)[/tex] angle (longer leg) is [tex]\(\sqrt{3}\)[/tex] times the length of the shorter leg.
So, if we denote the shorter leg as [tex]\(x\)[/tex], then the lengths of the sides are:
- Shorter leg: [tex]\(x\)[/tex]
- Longer leg: [tex]\(\sqrt{3}x\)[/tex]
- Hypotenuse: [tex]\(2x\)[/tex]
We are interested in the ratio of the two legs:
- Shorter leg to Longer leg: [tex]\(x : \sqrt{3}x = 1 : \sqrt{3}\)[/tex]
Given the different potential ratios, let’s check each one to see which can apply:
A. [tex]\(2 \sqrt{3} : 6\)[/tex]
- Simplify the ratio: [tex]\(2\sqrt{3}: 6\)[/tex] simplifies to [tex]\(\sqrt{3} : 3\)[/tex], which does not match [tex]\(1 : \sqrt{3}\)[/tex]. Thus, this cannot be a valid ratio.
B. [tex]\(\sqrt{2} : \sqrt{3}\)[/tex]
- This ratio does not simplify directly to [tex]\(1 : \sqrt{3}\)[/tex], so it cannot be a valid ratio.
C. [tex]\(1 : \sqrt{2}\)[/tex]
- This ratio is also not equivalent to [tex]\(1 : \sqrt{3}\)[/tex], so it is not a valid ratio.
D. [tex]\(\sqrt{2} : \sqrt{2}\)[/tex]
- Simplify the ratio: [tex]\(\sqrt{2} : \sqrt{2}\)[/tex] simplifies to [tex]\(1 : 1\)[/tex], which does not match [tex]\(1 : \sqrt{3}\)[/tex]. So, this cannot be a valid ratio.
E. [tex]\(1 : \sqrt{3}\)[/tex]
- This ratio exactly matches the ratio we derived, [tex]\(1 : \sqrt{3}\)[/tex]. Hence, this is a valid ratio.
F. [tex]\(\sqrt{3} : \sqrt{3}\)[/tex]
- Simplify the ratio: [tex]\(\sqrt{3} : \sqrt{3}\)[/tex] simplifies to [tex]\(1 : 1\)[/tex], which, again, does not match [tex]\(1 : \sqrt{3}\)[/tex]. So, this cannot be a valid ratio.
Based on the evaluation, the ratios that could apply are:
- B. [tex]\(\sqrt{2} : \sqrt{3}\)[/tex]
- C. [tex]\(1 : \sqrt{2}\)[/tex]
- D. [tex]\(\sqrt{2} : \sqrt{2}\)[/tex]
- F. [tex]\(\sqrt{3} : \sqrt{3}\)[/tex]
However, the valid ratio that specifically represents [tex]\(1 : \sqrt{3}\)[/tex] is option:
- E. [tex]\(1 : \sqrt{3}\)[/tex]
So the correct ratios between the lengths of the two legs of a 30-60-90 triangle are:
- B, C, D, and F.
Thus, the selected ratios that appropriately apply to this question are choices [tex]\('B', 'C', 'D', 'F'\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.