At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the magnitude of the acceleration of the ball, we'll break down the given information and solve it step by step.
### Step 1: Understanding Initial and Final Velocities
- Initial velocity ([tex]\(v_0\)[/tex]) of the ball: [tex]\(2.11 \, \text{m/s}\)[/tex]
- Initial angle ([tex]\(\theta_0\)[/tex]): [tex]\(-37.0^{\circ}\)[/tex]
- Final velocity ([tex]\(v_f\)[/tex]) of the ball: [tex]\(3.80 \, \text{m/s}\)[/tex]
- Final angle ([tex]\(\theta_f\)[/tex]): [tex]\(150.0^{\circ}\)[/tex]
- Contact time ([tex]\(t\)[/tex]): [tex]\(0.19 \, \text{s}\)[/tex]
### Step 2: Convert Angles to Radians
Angles need to be in radians for trigonometric calculations:
- Initial angle in radians: [tex]\(\theta_0 = -37.0^{\circ} = -0.6457718232380625 \, \text{radians}\)[/tex]
- Final angle in radians: [tex]\(\theta_f = 150.0^{\circ} = 2.6179938779914944 \, \text{radians}\)[/tex]
### Step 3: Calculate Initial Velocity Components
Using the initial velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{0_x} = v_0 \cos(\theta_0) = 2.11 \cos(-37.0^{\circ}) = 1.6851209261997877 \, \text{m/s}\)[/tex]
- [tex]\(v_{0_y} = v_0 \sin(\theta_0) = 2.11 \sin(-37.0^{\circ}) = -1.2698296988508218 \, \text{m/s}\)[/tex]
### Step 4: Calculate Final Velocity Components
Using the final velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{f_x} = v_f \cos(\theta_f) = 3.80 \cos(150.0^{\circ}) = -3.290896534380867 \, \text{m/s}\)[/tex]
- [tex]\(v_{f_y} = v_f \sin(\theta_f) = 3.80 \sin(150.0^{\circ}) = 1.8999999999999997 \, \text{m/s}\)[/tex]
### Step 5: Calculate Changes in Velocities
Determine the changes in the velocity components:
- [tex]\(\Delta v_x = v_{f_x} - v_{0_x} = -3.290896534380867 - 1.6851209261997877 = -4.976017460580655 \, \text{m/s}\)[/tex]
- [tex]\(\Delta v_y = v_{f_y} - v_{0_y} = 1.8999999999999997 - (-1.2698296988508218) = 3.1698296988508217 \, \text{m/s}\)[/tex]
### Step 6: Calculate Components of Acceleration
Using the changes in velocity and contact time to determine the acceleration components:
- [tex]\(a_x = \frac{\Delta v_x}{t} = \frac{-4.976017460580655}{0.19} = -26.189565582003446 \, \text{m/s}^2\)[/tex]
- [tex]\(a_y = \frac{\Delta v_y}{t} = \frac{3.1698296988508217}{0.19} = 16.68331420447801 \, \text{m/s}^2\)[/tex]
### Step 7: Calculate the Magnitude of Acceleration
Finally, determine the overall magnitude of the acceleration using the Pythagorean theorem:
- [tex]\(a = \sqrt{a_x^2 + a_y^2}\)[/tex]
- [tex]\(a = \sqrt{(-26.189565582003446)^2 + (16.68331420447801)^2} = 31.051993788151464 \, \text{m/s}^2\)[/tex]
### Answer
The magnitude of the acceleration of the ball is:
[tex]\[ a = 31.051993788151464 \, \text{m/s}^2 \][/tex]
### Step 1: Understanding Initial and Final Velocities
- Initial velocity ([tex]\(v_0\)[/tex]) of the ball: [tex]\(2.11 \, \text{m/s}\)[/tex]
- Initial angle ([tex]\(\theta_0\)[/tex]): [tex]\(-37.0^{\circ}\)[/tex]
- Final velocity ([tex]\(v_f\)[/tex]) of the ball: [tex]\(3.80 \, \text{m/s}\)[/tex]
- Final angle ([tex]\(\theta_f\)[/tex]): [tex]\(150.0^{\circ}\)[/tex]
- Contact time ([tex]\(t\)[/tex]): [tex]\(0.19 \, \text{s}\)[/tex]
### Step 2: Convert Angles to Radians
Angles need to be in radians for trigonometric calculations:
- Initial angle in radians: [tex]\(\theta_0 = -37.0^{\circ} = -0.6457718232380625 \, \text{radians}\)[/tex]
- Final angle in radians: [tex]\(\theta_f = 150.0^{\circ} = 2.6179938779914944 \, \text{radians}\)[/tex]
### Step 3: Calculate Initial Velocity Components
Using the initial velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{0_x} = v_0 \cos(\theta_0) = 2.11 \cos(-37.0^{\circ}) = 1.6851209261997877 \, \text{m/s}\)[/tex]
- [tex]\(v_{0_y} = v_0 \sin(\theta_0) = 2.11 \sin(-37.0^{\circ}) = -1.2698296988508218 \, \text{m/s}\)[/tex]
### Step 4: Calculate Final Velocity Components
Using the final velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{f_x} = v_f \cos(\theta_f) = 3.80 \cos(150.0^{\circ}) = -3.290896534380867 \, \text{m/s}\)[/tex]
- [tex]\(v_{f_y} = v_f \sin(\theta_f) = 3.80 \sin(150.0^{\circ}) = 1.8999999999999997 \, \text{m/s}\)[/tex]
### Step 5: Calculate Changes in Velocities
Determine the changes in the velocity components:
- [tex]\(\Delta v_x = v_{f_x} - v_{0_x} = -3.290896534380867 - 1.6851209261997877 = -4.976017460580655 \, \text{m/s}\)[/tex]
- [tex]\(\Delta v_y = v_{f_y} - v_{0_y} = 1.8999999999999997 - (-1.2698296988508218) = 3.1698296988508217 \, \text{m/s}\)[/tex]
### Step 6: Calculate Components of Acceleration
Using the changes in velocity and contact time to determine the acceleration components:
- [tex]\(a_x = \frac{\Delta v_x}{t} = \frac{-4.976017460580655}{0.19} = -26.189565582003446 \, \text{m/s}^2\)[/tex]
- [tex]\(a_y = \frac{\Delta v_y}{t} = \frac{3.1698296988508217}{0.19} = 16.68331420447801 \, \text{m/s}^2\)[/tex]
### Step 7: Calculate the Magnitude of Acceleration
Finally, determine the overall magnitude of the acceleration using the Pythagorean theorem:
- [tex]\(a = \sqrt{a_x^2 + a_y^2}\)[/tex]
- [tex]\(a = \sqrt{(-26.189565582003446)^2 + (16.68331420447801)^2} = 31.051993788151464 \, \text{m/s}^2\)[/tex]
### Answer
The magnitude of the acceleration of the ball is:
[tex]\[ a = 31.051993788151464 \, \text{m/s}^2 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.