Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] and find the necessary values step-by-step.
### Part a: Find an equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
Given that [tex]\( y \)[/tex] is inversely proportional to the square of [tex]\( x \)[/tex], we can express this relationship mathematically as follows:
[tex]\[ y = \frac{k}{x^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
We can determine the value of [tex]\( k \)[/tex] using any given pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values from the table. Let's use the first pair [tex]\((1, 16)\)[/tex]:
When [tex]\( x = 1 \)[/tex] and [tex]\( y = 16 \)[/tex]:
[tex]\[ 16 = \frac{k}{1^2} \][/tex]
[tex]\[ k = 16 \][/tex]
Now that we have determined [tex]\( k = 16 \)[/tex], we can write the equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = \frac{16}{x^2} \][/tex]
### Part b: Find the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex].
We need to find [tex]\( x \)[/tex] such that when [tex]\( y = 25 \)[/tex], the equation [tex]\( y = \frac{16}{x^2} \)[/tex] holds true. Plug [tex]\( y = 25 \)[/tex] into the equation and solve for [tex]\( x \)[/tex]:
Starting with the equation:
[tex]\[ 25 = \frac{16}{x^2} \][/tex]
Rearranging to solve for [tex]\( x^2 \)[/tex]:
[tex]\[ 25 x^2 = 16 \][/tex]
[tex]\[ x^2 = \frac{16}{25} \][/tex]
Taking the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt{\frac{16}{25}} \][/tex]
[tex]\[ x = \frac{\sqrt{16}}{\sqrt{25}} \][/tex]
[tex]\[ x = \frac{4}{5} \][/tex]
[tex]\[ x = 0.8 \][/tex]
Thus, the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex] is:
[tex]\[ x = 0.8 \][/tex]
### Part a: Find an equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
Given that [tex]\( y \)[/tex] is inversely proportional to the square of [tex]\( x \)[/tex], we can express this relationship mathematically as follows:
[tex]\[ y = \frac{k}{x^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
We can determine the value of [tex]\( k \)[/tex] using any given pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values from the table. Let's use the first pair [tex]\((1, 16)\)[/tex]:
When [tex]\( x = 1 \)[/tex] and [tex]\( y = 16 \)[/tex]:
[tex]\[ 16 = \frac{k}{1^2} \][/tex]
[tex]\[ k = 16 \][/tex]
Now that we have determined [tex]\( k = 16 \)[/tex], we can write the equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = \frac{16}{x^2} \][/tex]
### Part b: Find the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex].
We need to find [tex]\( x \)[/tex] such that when [tex]\( y = 25 \)[/tex], the equation [tex]\( y = \frac{16}{x^2} \)[/tex] holds true. Plug [tex]\( y = 25 \)[/tex] into the equation and solve for [tex]\( x \)[/tex]:
Starting with the equation:
[tex]\[ 25 = \frac{16}{x^2} \][/tex]
Rearranging to solve for [tex]\( x^2 \)[/tex]:
[tex]\[ 25 x^2 = 16 \][/tex]
[tex]\[ x^2 = \frac{16}{25} \][/tex]
Taking the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt{\frac{16}{25}} \][/tex]
[tex]\[ x = \frac{\sqrt{16}}{\sqrt{25}} \][/tex]
[tex]\[ x = \frac{4}{5} \][/tex]
[tex]\[ x = 0.8 \][/tex]
Thus, the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex] is:
[tex]\[ x = 0.8 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.