Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Of course! Let's solve this problem step-by-step based on the information provided about the arithmetic progression (A.P.).
### Given:
1. The 11th term [tex]\(a_{11}\)[/tex] is -31.
2. The 21st term [tex]\(a_{21}\)[/tex] is -71.
We will determine:
a) The first term ([tex]\(a\)[/tex]),
b) The common difference ([tex]\(d\)[/tex]),
c) The 15th term ([tex]\(a_{15}\)[/tex]).
### Step-by-Step Solution
An arithmetic progression (A.P.) is characterized by the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_n = a + (n-1)d \][/tex]
where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the position of the term.
#### Step 1: Setting up the equations
Using the given terms:
1. For the 11th term:
[tex]\[ a_{11} = a + 10d = -31 \][/tex]
2. For the 21st term:
[tex]\[ a_{21} = a + 20d = -71 \][/tex]
#### Step 2: Solve for the common difference ([tex]\(d\)[/tex])
We have two equations:
[tex]\[ 1) \quad a + 10d = -31 \][/tex]
[tex]\[ 2) \quad a + 20d = -71 \][/tex]
Subtracting equation (1) from equation (2) to eliminate [tex]\(a\)[/tex]:
[tex]\[ (a + 20d) - (a + 10d) = -71 - (-31) \][/tex]
[tex]\[ 20d - 10d = -71 + 31 \][/tex]
[tex]\[ 10d = -40 \][/tex]
Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{-40}{10} \][/tex]
[tex]\[ d = -4.0 \][/tex]
So, the common difference [tex]\(d\)[/tex] is [tex]\(-4.0\)[/tex].
#### Step 3: Solve for the first term ([tex]\(a\)[/tex])
Substitute the value of [tex]\(d\)[/tex] back into equation (1):
[tex]\[ a + 10(-4.0) = -31 \][/tex]
[tex]\[ a - 40 = -31 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = -31 + 40 \][/tex]
[tex]\[ a = 9 \][/tex]
So, the first term [tex]\(a\)[/tex] is [tex]\(9\)[/tex].
#### Step 4: Find the 15th term ([tex]\(a_{15}\)[/tex])
Using the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_{15} = a + (15-1)d \][/tex]
[tex]\[ a_{15} = 9 + 14(-4.0) \][/tex]
[tex]\[ a_{15} = 9 - 56 \][/tex]
[tex]\[ a_{15} = -47.0 \][/tex]
So, the 15th term [tex]\(a_{15}\)[/tex] is [tex]\(-47.0\)[/tex].
### Summary of Results
a) The first term [tex]\(a\)[/tex] is [tex]\(9\)[/tex].
b) The common difference [tex]\(d\)[/tex] is [tex]\(-4.0\)[/tex].
c) The 15th term [tex]\(a_{15}\)[/tex] is [tex]\(-47.0\)[/tex].
### Given:
1. The 11th term [tex]\(a_{11}\)[/tex] is -31.
2. The 21st term [tex]\(a_{21}\)[/tex] is -71.
We will determine:
a) The first term ([tex]\(a\)[/tex]),
b) The common difference ([tex]\(d\)[/tex]),
c) The 15th term ([tex]\(a_{15}\)[/tex]).
### Step-by-Step Solution
An arithmetic progression (A.P.) is characterized by the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_n = a + (n-1)d \][/tex]
where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the position of the term.
#### Step 1: Setting up the equations
Using the given terms:
1. For the 11th term:
[tex]\[ a_{11} = a + 10d = -31 \][/tex]
2. For the 21st term:
[tex]\[ a_{21} = a + 20d = -71 \][/tex]
#### Step 2: Solve for the common difference ([tex]\(d\)[/tex])
We have two equations:
[tex]\[ 1) \quad a + 10d = -31 \][/tex]
[tex]\[ 2) \quad a + 20d = -71 \][/tex]
Subtracting equation (1) from equation (2) to eliminate [tex]\(a\)[/tex]:
[tex]\[ (a + 20d) - (a + 10d) = -71 - (-31) \][/tex]
[tex]\[ 20d - 10d = -71 + 31 \][/tex]
[tex]\[ 10d = -40 \][/tex]
Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{-40}{10} \][/tex]
[tex]\[ d = -4.0 \][/tex]
So, the common difference [tex]\(d\)[/tex] is [tex]\(-4.0\)[/tex].
#### Step 3: Solve for the first term ([tex]\(a\)[/tex])
Substitute the value of [tex]\(d\)[/tex] back into equation (1):
[tex]\[ a + 10(-4.0) = -31 \][/tex]
[tex]\[ a - 40 = -31 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = -31 + 40 \][/tex]
[tex]\[ a = 9 \][/tex]
So, the first term [tex]\(a\)[/tex] is [tex]\(9\)[/tex].
#### Step 4: Find the 15th term ([tex]\(a_{15}\)[/tex])
Using the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_{15} = a + (15-1)d \][/tex]
[tex]\[ a_{15} = 9 + 14(-4.0) \][/tex]
[tex]\[ a_{15} = 9 - 56 \][/tex]
[tex]\[ a_{15} = -47.0 \][/tex]
So, the 15th term [tex]\(a_{15}\)[/tex] is [tex]\(-47.0\)[/tex].
### Summary of Results
a) The first term [tex]\(a\)[/tex] is [tex]\(9\)[/tex].
b) The common difference [tex]\(d\)[/tex] is [tex]\(-4.0\)[/tex].
c) The 15th term [tex]\(a_{15}\)[/tex] is [tex]\(-47.0\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.