Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the maximum concentration of silver ions ([tex]\( Ag^+ \)[/tex]) in a solution that is [tex]\( 0.025 \, \text{M} \)[/tex] in carbonate ([tex]\( CO_3^{2-} \)[/tex]), we need to consider the solubility product constant ([tex]\( K_{sp} \)[/tex]) of silver carbonate ([tex]\( Ag_2CO_3 \)[/tex]), which is [tex]\( 8.1 \times 10^{-12} \)[/tex].
The dissolution of [tex]\( Ag_2CO_3 \)[/tex] in water can be represented by the following equation:
[tex]\[ Ag_2CO_3 \leftrightarrow 2Ag^+ + CO_3^{2-} \][/tex]
The [tex]\( K_{sp} \)[/tex] expression for this equilibrium is given by:
[tex]\[ K_{sp} = [Ag^+]^2 [CO_3^{2-}] \][/tex]
Given:
[tex]\[ K_{sp} = 8.1 \times 10^{-12} \][/tex]
[tex]\[ [CO_3^{2-}] = 0.025 \, M \][/tex]
We need to find the concentration of [tex]\( Ag^+ \)[/tex], which we will denote as [tex]\( x \)[/tex]. This leads to the following equation:
[tex]\[ 8.1 \times 10^{-12} = [Ag^+]^2 (0.025) \][/tex]
Rearranging to solve for [tex]\( [Ag^+] \)[/tex], we get:
[tex]\[ [Ag^+]^2 = \frac{8.1 \times 10^{-12}}{0.025} \][/tex]
Let's calculate this step by step:
1. Compute the denominator:
[tex]\[ 0.025 = 2.5 \times 10^{-2} \][/tex]
2. Now divide the [tex]\( K_{sp} \)[/tex] by this value:
[tex]\[ \frac{8.1 \times 10^{-12}}{2.5 \times 10^{-2}} = \frac{8.1 \times 10^{-12}}{2.5} \times 10^{2} = 3.24 \times 10^{-10} \][/tex]
3. Finally, take the square root of the result to find [tex]\( [Ag^+] \)[/tex]:
[tex]\[ [Ag^+] = \sqrt{3.24 \times 10^{-10}} \][/tex]
4. Calculating the square root:
[tex]\[ \sqrt{3.24} \approx 1.8 \][/tex]
[tex]\[ \sqrt{10^{-10}} = 10^{-5} \][/tex]
[tex]\[ [Ag^+] = 1.8 \times 10^{-5} \, M \][/tex]
Thus, the maximum concentration of silver ions ([tex]\( Ag^+ \)[/tex]) in this solution is [tex]\( 1.8 \times 10^{-5} \, M \)[/tex].
The correct option is:
c. 1
The dissolution of [tex]\( Ag_2CO_3 \)[/tex] in water can be represented by the following equation:
[tex]\[ Ag_2CO_3 \leftrightarrow 2Ag^+ + CO_3^{2-} \][/tex]
The [tex]\( K_{sp} \)[/tex] expression for this equilibrium is given by:
[tex]\[ K_{sp} = [Ag^+]^2 [CO_3^{2-}] \][/tex]
Given:
[tex]\[ K_{sp} = 8.1 \times 10^{-12} \][/tex]
[tex]\[ [CO_3^{2-}] = 0.025 \, M \][/tex]
We need to find the concentration of [tex]\( Ag^+ \)[/tex], which we will denote as [tex]\( x \)[/tex]. This leads to the following equation:
[tex]\[ 8.1 \times 10^{-12} = [Ag^+]^2 (0.025) \][/tex]
Rearranging to solve for [tex]\( [Ag^+] \)[/tex], we get:
[tex]\[ [Ag^+]^2 = \frac{8.1 \times 10^{-12}}{0.025} \][/tex]
Let's calculate this step by step:
1. Compute the denominator:
[tex]\[ 0.025 = 2.5 \times 10^{-2} \][/tex]
2. Now divide the [tex]\( K_{sp} \)[/tex] by this value:
[tex]\[ \frac{8.1 \times 10^{-12}}{2.5 \times 10^{-2}} = \frac{8.1 \times 10^{-12}}{2.5} \times 10^{2} = 3.24 \times 10^{-10} \][/tex]
3. Finally, take the square root of the result to find [tex]\( [Ag^+] \)[/tex]:
[tex]\[ [Ag^+] = \sqrt{3.24 \times 10^{-10}} \][/tex]
4. Calculating the square root:
[tex]\[ \sqrt{3.24} \approx 1.8 \][/tex]
[tex]\[ \sqrt{10^{-10}} = 10^{-5} \][/tex]
[tex]\[ [Ag^+] = 1.8 \times 10^{-5} \, M \][/tex]
Thus, the maximum concentration of silver ions ([tex]\( Ag^+ \)[/tex]) in this solution is [tex]\( 1.8 \times 10^{-5} \, M \)[/tex].
The correct option is:
c. 1
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.