Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's determine the relationship between the lines that pass through the given points.
### Step 1: Find the slope of each line
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
#### Line [tex]\(a\)[/tex]
Points: [tex]\((-5, 2)\)[/tex] and [tex]\((1, 6)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_a = \frac{6 - 2}{1 - (-5)} = \frac{4}{1 + 5} = \frac{4}{6} = \frac{2}{3} \][/tex]
#### Line [tex]\(b\)[/tex]
Points: [tex]\((-4, -2)\)[/tex] and [tex]\((2, 2)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_b = \frac{2 - (-2)}{2 - (-4)} = \frac{2 + 2}{2 + 4} = \frac{4}{6} = \frac{2}{3} \][/tex]
### Step 2: Compare the slopes to determine the relationship
1. Parallel lines: Two lines are parallel if their slopes are equal.
2. Perpendicular lines: Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
3. Neither: If neither condition is met, then the lines are neither parallel nor perpendicular.
#### Check for parallel lines:
Since [tex]\(\text{slope}_a = \text{slope}_b = \frac{2}{3}\)[/tex], the slopes are equal.
Hence, the two lines are parallel.
### Final Answer:
[tex]\[ \boxed{\text{Parallel}} \][/tex]
### Step 1: Find the slope of each line
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
#### Line [tex]\(a\)[/tex]
Points: [tex]\((-5, 2)\)[/tex] and [tex]\((1, 6)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_a = \frac{6 - 2}{1 - (-5)} = \frac{4}{1 + 5} = \frac{4}{6} = \frac{2}{3} \][/tex]
#### Line [tex]\(b\)[/tex]
Points: [tex]\((-4, -2)\)[/tex] and [tex]\((2, 2)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_b = \frac{2 - (-2)}{2 - (-4)} = \frac{2 + 2}{2 + 4} = \frac{4}{6} = \frac{2}{3} \][/tex]
### Step 2: Compare the slopes to determine the relationship
1. Parallel lines: Two lines are parallel if their slopes are equal.
2. Perpendicular lines: Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
3. Neither: If neither condition is met, then the lines are neither parallel nor perpendicular.
#### Check for parallel lines:
Since [tex]\(\text{slope}_a = \text{slope}_b = \frac{2}{3}\)[/tex], the slopes are equal.
Hence, the two lines are parallel.
### Final Answer:
[tex]\[ \boxed{\text{Parallel}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.