Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the distance between the two points [tex]\( C \)[/tex] and [tex]\( D \)[/tex], we can use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of point [tex]\( C \)[/tex] are [tex]\((-1, 4)\)[/tex], and the coordinates of point [tex]\( D \)[/tex] are [tex]\((2, 0)\)[/tex]. Let's break it down step by step:
1. Identify the coordinates:
- Point [tex]\( C \)[/tex] ( [tex]\( x_1, y_1 \)[/tex] ) = [tex]\((-1, 4)\)[/tex]
- Point [tex]\( D \)[/tex] ( [tex]\( x_2, y_2 \)[/tex] ) = [tex]\((2, 0)\)[/tex]
2. Calculate the differences in the x and y coordinates:
- [tex]\( \Delta x = x_2 - x_1 = 2 - (-1) = 3 \)[/tex]
- [tex]\( \Delta y = y_2 - y_1 = 0 - 4 = -4 \)[/tex]
3. Square each difference:
- [tex]\( (\Delta x)^2 = 3^2 = 9 \)[/tex]
- [tex]\( (\Delta y)^2 = (-4)^2 = 16 \)[/tex]
4. Sum the squares of the differences:
- [tex]\( (\Delta x)^2 + (\Delta y)^2 = 9 + 16 = 25 \)[/tex]
5. Take the square root of the sum to find the distance:
- [tex]\( d = \sqrt{25} = 5 \)[/tex]
So, the distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 5 \)[/tex] units.
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of point [tex]\( C \)[/tex] are [tex]\((-1, 4)\)[/tex], and the coordinates of point [tex]\( D \)[/tex] are [tex]\((2, 0)\)[/tex]. Let's break it down step by step:
1. Identify the coordinates:
- Point [tex]\( C \)[/tex] ( [tex]\( x_1, y_1 \)[/tex] ) = [tex]\((-1, 4)\)[/tex]
- Point [tex]\( D \)[/tex] ( [tex]\( x_2, y_2 \)[/tex] ) = [tex]\((2, 0)\)[/tex]
2. Calculate the differences in the x and y coordinates:
- [tex]\( \Delta x = x_2 - x_1 = 2 - (-1) = 3 \)[/tex]
- [tex]\( \Delta y = y_2 - y_1 = 0 - 4 = -4 \)[/tex]
3. Square each difference:
- [tex]\( (\Delta x)^2 = 3^2 = 9 \)[/tex]
- [tex]\( (\Delta y)^2 = (-4)^2 = 16 \)[/tex]
4. Sum the squares of the differences:
- [tex]\( (\Delta x)^2 + (\Delta y)^2 = 9 + 16 = 25 \)[/tex]
5. Take the square root of the sum to find the distance:
- [tex]\( d = \sqrt{25} = 5 \)[/tex]
So, the distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 5 \)[/tex] units.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.