At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's determine the percent yield of the reaction step-by-step. The reaction given is:
[tex]\[ \text{Fe}_2\text{O}_3(s) + 2 \text{Al}(s) \rightarrow \text{Al}_2\text{O}_3(s) + 2 \text{Fe}(s) \][/tex]
We are given:
- Actual yield of Fe: [tex]\( 28.65 \, \text{g} \)[/tex]
- Initial mass of Fe₂O₃: [tex]\( 50.00 \, \text{g} \)[/tex]
- Molar mass of Fe₂O₃: [tex]\( 159.7 \, \text{g/mol} \)[/tex]
- Molar mass of Fe: [tex]\( 55.85 \, \text{g/mol} \)[/tex]
### Step 1: Calculate the moles of Fe₂O₃
To find the moles of Fe₂O₃, use its initial mass and molar mass:
[tex]\[ \text{Moles of Fe}_2\text{O}_3 = \frac{\text{Mass of Fe}_2\text{O}_3}{\text{Molar mass of Fe}_2\text{O}_3} = \frac{50.00 \, \text{g}}{159.7 \, \text{g/mol}} = 0.313087 \, \text{mol} \][/tex]
### Step 2: Determine the moles of Fe produced
From the stoichiometry of the reaction, 1 mole of Fe₂O₃ produces 2 moles of Fe. Using the moles of Fe₂O₃ calculated:
[tex]\[ \text{Moles of Fe} = \text{Moles of Fe}_2\text{O}_3 \times 2 = 0.313087 \, \text{mol} \times 2 = 0.626174 \, \text{mol} \][/tex]
### Step 3: Calculate the theoretical yield of Fe
The theoretical yield is found by converting the moles of Fe to grams using its molar mass:
[tex]\[ \text{Theoretical yield of Fe} = \text{Moles of Fe} \times \text{Molar mass of Fe} = 0.626174 \, \text{mol} \times 55.85 \, \text{g/mol} = 34.971822 \, \text{g} \][/tex]
### Step 4: Calculate the percent yield
Finally, we determine the percent yield using the actual yield and theoretical yield:
[tex]\[ \text{Percent yield} = \left( \frac{\text{Actual yield}}{\text{Theoretical yield}} \right) \times 100 = \left( \frac{28.65 \, \text{g}}{34.971822 \, \text{g}} \right) \times 100 = 81.923 \% \][/tex]
Thus, the percent yield of the reaction is approximately [tex]\( 81.923 \% \)[/tex].
[tex]\[ \text{Fe}_2\text{O}_3(s) + 2 \text{Al}(s) \rightarrow \text{Al}_2\text{O}_3(s) + 2 \text{Fe}(s) \][/tex]
We are given:
- Actual yield of Fe: [tex]\( 28.65 \, \text{g} \)[/tex]
- Initial mass of Fe₂O₃: [tex]\( 50.00 \, \text{g} \)[/tex]
- Molar mass of Fe₂O₃: [tex]\( 159.7 \, \text{g/mol} \)[/tex]
- Molar mass of Fe: [tex]\( 55.85 \, \text{g/mol} \)[/tex]
### Step 1: Calculate the moles of Fe₂O₃
To find the moles of Fe₂O₃, use its initial mass and molar mass:
[tex]\[ \text{Moles of Fe}_2\text{O}_3 = \frac{\text{Mass of Fe}_2\text{O}_3}{\text{Molar mass of Fe}_2\text{O}_3} = \frac{50.00 \, \text{g}}{159.7 \, \text{g/mol}} = 0.313087 \, \text{mol} \][/tex]
### Step 2: Determine the moles of Fe produced
From the stoichiometry of the reaction, 1 mole of Fe₂O₃ produces 2 moles of Fe. Using the moles of Fe₂O₃ calculated:
[tex]\[ \text{Moles of Fe} = \text{Moles of Fe}_2\text{O}_3 \times 2 = 0.313087 \, \text{mol} \times 2 = 0.626174 \, \text{mol} \][/tex]
### Step 3: Calculate the theoretical yield of Fe
The theoretical yield is found by converting the moles of Fe to grams using its molar mass:
[tex]\[ \text{Theoretical yield of Fe} = \text{Moles of Fe} \times \text{Molar mass of Fe} = 0.626174 \, \text{mol} \times 55.85 \, \text{g/mol} = 34.971822 \, \text{g} \][/tex]
### Step 4: Calculate the percent yield
Finally, we determine the percent yield using the actual yield and theoretical yield:
[tex]\[ \text{Percent yield} = \left( \frac{\text{Actual yield}}{\text{Theoretical yield}} \right) \times 100 = \left( \frac{28.65 \, \text{g}}{34.971822 \, \text{g}} \right) \times 100 = 81.923 \% \][/tex]
Thus, the percent yield of the reaction is approximately [tex]\( 81.923 \% \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.