At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which fractions are equivalent to [tex]\(\frac{21}{28}\)[/tex], we need to simplify [tex]\(\frac{21}{28}\)[/tex] and then compare this simplified form to the other fractions.
### Step 1: Simplify [tex]\(\frac{21}{28}\)[/tex]
1. Find the greatest common divisor (GCD) of 21 and 28.
- The factors of 21 are 1, 3, 7, 21.
- The factors of 28 are 1, 2, 4, 7, 14, 28.
- The greatest common factor is 7.
2. Divide both the numerator and the denominator of [tex]\(\frac{21}{28}\)[/tex] by 7:
[tex]\[ \frac{21 \div 7}{28 \div 7} = \frac{3}{4} \][/tex]
So, [tex]\(\frac{21}{28}\)[/tex] simplifies to [tex]\(\frac{3}{4}\)[/tex].
### Step 2: Simplify and compare each of the given fractions
1. [tex]\(\frac{42}{56}\)[/tex]
- GCD of 42 and 56 is 14.
- Simplify: [tex]\(\frac{42 \div 14}{56 \div 14} = \frac{3}{4}\)[/tex]
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
2. [tex]\(\frac{3}{4}\)[/tex]
- Already in simplest form.
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
3. [tex]\(\frac{3}{9}\)[/tex]
- GCD of 3 and 9 is 3.
- Simplify: [tex]\(\frac{3 \div 3}{9 \div 3} = \frac{1}{3}\)[/tex]
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
4. [tex]\(\frac{3}{7}\)[/tex]
- Already in simplest form.
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
### Step 3: Conclusion
Comparing all the simplified forms, we find that [tex]\(\frac{42}{56}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex] both simplify to [tex]\(\frac{3}{4}\)[/tex], which is equivalent to [tex]\(\frac{21}{28}\)[/tex]. Therefore, the two fractions equivalent to [tex]\(\frac{21}{28}\)[/tex] are:
[tex]\[ \boxed{\frac{42}{56} \quad \text{and} \quad \frac{3}{4}} \][/tex]
### Step 1: Simplify [tex]\(\frac{21}{28}\)[/tex]
1. Find the greatest common divisor (GCD) of 21 and 28.
- The factors of 21 are 1, 3, 7, 21.
- The factors of 28 are 1, 2, 4, 7, 14, 28.
- The greatest common factor is 7.
2. Divide both the numerator and the denominator of [tex]\(\frac{21}{28}\)[/tex] by 7:
[tex]\[ \frac{21 \div 7}{28 \div 7} = \frac{3}{4} \][/tex]
So, [tex]\(\frac{21}{28}\)[/tex] simplifies to [tex]\(\frac{3}{4}\)[/tex].
### Step 2: Simplify and compare each of the given fractions
1. [tex]\(\frac{42}{56}\)[/tex]
- GCD of 42 and 56 is 14.
- Simplify: [tex]\(\frac{42 \div 14}{56 \div 14} = \frac{3}{4}\)[/tex]
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
2. [tex]\(\frac{3}{4}\)[/tex]
- Already in simplest form.
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
3. [tex]\(\frac{3}{9}\)[/tex]
- GCD of 3 and 9 is 3.
- Simplify: [tex]\(\frac{3 \div 3}{9 \div 3} = \frac{1}{3}\)[/tex]
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
4. [tex]\(\frac{3}{7}\)[/tex]
- Already in simplest form.
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
### Step 3: Conclusion
Comparing all the simplified forms, we find that [tex]\(\frac{42}{56}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex] both simplify to [tex]\(\frac{3}{4}\)[/tex], which is equivalent to [tex]\(\frac{21}{28}\)[/tex]. Therefore, the two fractions equivalent to [tex]\(\frac{21}{28}\)[/tex] are:
[tex]\[ \boxed{\frac{42}{56} \quad \text{and} \quad \frac{3}{4}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.