Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which expression is equivalent to [tex]\((s t)(6)\)[/tex], let's analyze the provided options.
1. Expression: [tex]\(s(t(6))\)[/tex]
Here, [tex]\(t(6)\)[/tex] is calculated first, and then [tex]\(s\)[/tex] is applied to this result. We can represent this process by considering the composition of functions where [tex]\(s\)[/tex] acts on the result of [tex]\(t(6)\)[/tex]. This matches the form [tex]\((s \circ t)(6)\)[/tex].
2. Expression: [tex]\(s(x) \times t(6)\)[/tex]
In this expression, [tex]\(t(6)\)[/tex] is calculated first. However, [tex]\(s(x)\)[/tex] is simply a multiplication by the value of [tex]\(s\)[/tex] at some general [tex]\(x\)[/tex], not specifically related to [tex]\(t(6)\)[/tex]. This does not represent function composition, but rather a product of two separate evaluations.
3. Expression: [tex]\(s(6) \times t(6)\)[/tex]
Here, both [tex]\(s\)[/tex] and [tex]\(t\)[/tex] are evaluated independently at [tex]\(6\)[/tex], and the results are multiplied. This is still not the composition of functions but rather independent evaluations multiplied together.
4. Expression: [tex]\(6 \times s(x) \times t(x)\)[/tex]
In this expression, the number [tex]\(6\)[/tex] is multiplied by the values of [tex]\(s(x)\)[/tex] and [tex]\(t(x)\)[/tex] for some general [tex]\(x\)[/tex]. This does not involve applying one function to the result of another and is far from representing function composition.
Given the explanations above, the correct expression that represents [tex]\((s t)(6)\)[/tex] in terms of function composition is:
[tex]\[ \boxed{s(t(6))} \][/tex]
1. Expression: [tex]\(s(t(6))\)[/tex]
Here, [tex]\(t(6)\)[/tex] is calculated first, and then [tex]\(s\)[/tex] is applied to this result. We can represent this process by considering the composition of functions where [tex]\(s\)[/tex] acts on the result of [tex]\(t(6)\)[/tex]. This matches the form [tex]\((s \circ t)(6)\)[/tex].
2. Expression: [tex]\(s(x) \times t(6)\)[/tex]
In this expression, [tex]\(t(6)\)[/tex] is calculated first. However, [tex]\(s(x)\)[/tex] is simply a multiplication by the value of [tex]\(s\)[/tex] at some general [tex]\(x\)[/tex], not specifically related to [tex]\(t(6)\)[/tex]. This does not represent function composition, but rather a product of two separate evaluations.
3. Expression: [tex]\(s(6) \times t(6)\)[/tex]
Here, both [tex]\(s\)[/tex] and [tex]\(t\)[/tex] are evaluated independently at [tex]\(6\)[/tex], and the results are multiplied. This is still not the composition of functions but rather independent evaluations multiplied together.
4. Expression: [tex]\(6 \times s(x) \times t(x)\)[/tex]
In this expression, the number [tex]\(6\)[/tex] is multiplied by the values of [tex]\(s(x)\)[/tex] and [tex]\(t(x)\)[/tex] for some general [tex]\(x\)[/tex]. This does not involve applying one function to the result of another and is far from representing function composition.
Given the explanations above, the correct expression that represents [tex]\((s t)(6)\)[/tex] in terms of function composition is:
[tex]\[ \boxed{s(t(6))} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.