Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve this step by step to find the ratio of the number of Mathematics books to the number of English books.
1. Identify Given Ratios:
- The ratio of the number of Mathematics books (M) to Science books (S) is 2:3.
- The ratio of the number of Science books (S) to English books (E) is 2:5.
2. Express the Ratios Mathematically:
- The first ratio tells us [tex]\( \frac{M}{S} = \frac{2}{3} \)[/tex].
- The second ratio tells us [tex]\( \frac{S}{E} = \frac{2}{5} \)[/tex].
3. Expressing [tex]\( S \)[/tex] in Terms of [tex]\( M \)[/tex]:
From the first ratio, we can express [tex]\( S \)[/tex] in terms of [tex]\( M \)[/tex]:
[tex]\[ S = \frac{3}{2} M \][/tex]
4. Expressing [tex]\( S \)[/tex] in Terms of [tex]\( E \)[/tex]:
From the second ratio, we can express [tex]\( S \)[/tex] in terms of [tex]\( E \)[/tex]:
[tex]\[ S = \frac{2}{5} E \][/tex]
5. Equating the Two Expressions for [tex]\( S \)[/tex]:
Since both expressions equal [tex]\( S \)[/tex], we can set them equal to each other:
[tex]\[ \frac{3}{2} M = \frac{2}{5} E \][/tex]
6. Solving for [tex]\( \frac{M}{E} \)[/tex]:
To find the ratio [tex]\( \frac{M}{E} \)[/tex], we will solve the equation for [tex]\( M \)[/tex] in terms of [tex]\( E \)[/tex]:
[tex]\[ \frac{3}{2} M = \frac{2}{5} E \][/tex]
Multiply both sides by 10 to clear the denominators:
[tex]\[ 15M = 4E \][/tex]
7. Isolating [tex]\( M \)[/tex] over [tex]\( E \)[/tex]:
To find the ratio [tex]\( \frac{M}{E} \)[/tex]:
[tex]\[ \frac{M}{E} = \frac{4}{15} \][/tex]
Thus, the ratio of the number of Mathematics books to the number of English books is [tex]\( \frac{4}{15} \)[/tex].
1. Identify Given Ratios:
- The ratio of the number of Mathematics books (M) to Science books (S) is 2:3.
- The ratio of the number of Science books (S) to English books (E) is 2:5.
2. Express the Ratios Mathematically:
- The first ratio tells us [tex]\( \frac{M}{S} = \frac{2}{3} \)[/tex].
- The second ratio tells us [tex]\( \frac{S}{E} = \frac{2}{5} \)[/tex].
3. Expressing [tex]\( S \)[/tex] in Terms of [tex]\( M \)[/tex]:
From the first ratio, we can express [tex]\( S \)[/tex] in terms of [tex]\( M \)[/tex]:
[tex]\[ S = \frac{3}{2} M \][/tex]
4. Expressing [tex]\( S \)[/tex] in Terms of [tex]\( E \)[/tex]:
From the second ratio, we can express [tex]\( S \)[/tex] in terms of [tex]\( E \)[/tex]:
[tex]\[ S = \frac{2}{5} E \][/tex]
5. Equating the Two Expressions for [tex]\( S \)[/tex]:
Since both expressions equal [tex]\( S \)[/tex], we can set them equal to each other:
[tex]\[ \frac{3}{2} M = \frac{2}{5} E \][/tex]
6. Solving for [tex]\( \frac{M}{E} \)[/tex]:
To find the ratio [tex]\( \frac{M}{E} \)[/tex], we will solve the equation for [tex]\( M \)[/tex] in terms of [tex]\( E \)[/tex]:
[tex]\[ \frac{3}{2} M = \frac{2}{5} E \][/tex]
Multiply both sides by 10 to clear the denominators:
[tex]\[ 15M = 4E \][/tex]
7. Isolating [tex]\( M \)[/tex] over [tex]\( E \)[/tex]:
To find the ratio [tex]\( \frac{M}{E} \)[/tex]:
[tex]\[ \frac{M}{E} = \frac{4}{15} \][/tex]
Thus, the ratio of the number of Mathematics books to the number of English books is [tex]\( \frac{4}{15} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.