Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the interval on which the function [tex]\( g(x) = |x+1| - 7 \)[/tex] is decreasing, let's analyze the transformations applied to the original function [tex]\( f(x) = |x| \)[/tex].
1. Understanding the Absolute Value Function:
The function [tex]\( f(x) = |x| \)[/tex] has a V-shape, with the vertex at [tex]\( x = 0 \)[/tex]. It decreases on the interval [tex]\( (-\infty, 0) \)[/tex] and increases on the interval [tex]\( (0, \infty) \)[/tex].
2. Transformation [tex]\( g(x) = |x+1| - 7 \)[/tex]:
- [tex]\( |x+1| \)[/tex] moves the graph of [tex]\( |x| \)[/tex] to the left by 1 unit. So, the vertex of the absolute value part is now at [tex]\( x = -1 \)[/tex].
- Subtracting 7 shifts the entire graph downward by 7 units, but this vertical shift does not affect the intervals where the function is increasing or decreasing.
3. Vertex of the Transformed Function [tex]\( g(x) \)[/tex]:
The vertex of [tex]\( g(x) = |x+1| - 7 \)[/tex] is at [tex]\( x = -1 \)[/tex]. This is because the transformation [tex]\( |x+1| \)[/tex] changes the location of the minimum point of the absolute value function to [tex]\( x = -1 \)[/tex].
4. Intervals of Decrease:
The function [tex]\( g(x) = |x+1| - 7 \)[/tex] will follow the behavior of the absolute value function [tex]\( |x+1| \)[/tex]. Therefore:
- It will decrease on the interval to the left of the vertex, which is [tex]\( (-\infty, -1) \)[/tex].
- It will increase on the interval to the right of the vertex, which is [tex]\( (-1, \infty) \)[/tex].
From this analysis, the function [tex]\( g(x) \)[/tex] is decreasing on the interval [tex]\( (-\infty, -1) \)[/tex].
Thus, the correct interval is:
[tex]\[ (-\infty, -1) \][/tex]
1. Understanding the Absolute Value Function:
The function [tex]\( f(x) = |x| \)[/tex] has a V-shape, with the vertex at [tex]\( x = 0 \)[/tex]. It decreases on the interval [tex]\( (-\infty, 0) \)[/tex] and increases on the interval [tex]\( (0, \infty) \)[/tex].
2. Transformation [tex]\( g(x) = |x+1| - 7 \)[/tex]:
- [tex]\( |x+1| \)[/tex] moves the graph of [tex]\( |x| \)[/tex] to the left by 1 unit. So, the vertex of the absolute value part is now at [tex]\( x = -1 \)[/tex].
- Subtracting 7 shifts the entire graph downward by 7 units, but this vertical shift does not affect the intervals where the function is increasing or decreasing.
3. Vertex of the Transformed Function [tex]\( g(x) \)[/tex]:
The vertex of [tex]\( g(x) = |x+1| - 7 \)[/tex] is at [tex]\( x = -1 \)[/tex]. This is because the transformation [tex]\( |x+1| \)[/tex] changes the location of the minimum point of the absolute value function to [tex]\( x = -1 \)[/tex].
4. Intervals of Decrease:
The function [tex]\( g(x) = |x+1| - 7 \)[/tex] will follow the behavior of the absolute value function [tex]\( |x+1| \)[/tex]. Therefore:
- It will decrease on the interval to the left of the vertex, which is [tex]\( (-\infty, -1) \)[/tex].
- It will increase on the interval to the right of the vertex, which is [tex]\( (-1, \infty) \)[/tex].
From this analysis, the function [tex]\( g(x) \)[/tex] is decreasing on the interval [tex]\( (-\infty, -1) \)[/tex].
Thus, the correct interval is:
[tex]\[ (-\infty, -1) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.