Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's evaluate the statements one by one:
### Statement (i)
[tex]\[ \{b, c\} \subset \{c, d, e\} \][/tex]
A set [tex]\( A \)[/tex] is a subset of set [tex]\( B \)[/tex] (written as [tex]\( A \subset B \)[/tex]) if every element of [tex]\( A \)[/tex] is also an element of [tex]\( B \)[/tex]. Here, we can see that "b" is not an element of [tex]\(\{c, d, e\}\)[/tex]. Thus:
[tex]\[ \{b, c\} \not\subset \{c, d, e\} \][/tex]
Statement (i) is False.
### Statement (ii)
[tex]\[ \{a, e, i\} \subset \{x : x \text{ is a vowel in the English alphabet}\} \][/tex]
The set of vowels in the English alphabet is [tex]\(\{a, e, i, o, u\}\)[/tex]. Since [tex]\(\{a, e, i\}\)[/tex] is a subset of this set, the statement is true:
[tex]\[ \{a, e, i\} \subset \{a, e, i, o, u\} \][/tex]
Statement (ii) is True.
### Statement (iii)
[tex]\[ \{1, 2, 3\} \subset \{1, 2, 4, 5\} \][/tex]
For [tex]\(\{1, 2, 3\}\)[/tex] to be a subset of [tex]\(\{1, 2, 4, 5\}\)[/tex], every element in [tex]\(\{1, 2, 3\}\)[/tex] must be in [tex]\(\{1, 2, 4, 5\}\)[/tex]. However, 3 is not in [tex]\(\{1, 2, 4, 5\}\)[/tex], thus:
[tex]\[ \{1, 2, 3\} \not\subset \{1, 2, 4, 5\} \][/tex]
Statement (iii) is False.
### Statement (iv)
[tex]\[ \{c\} \subset \{b, c, d\} \][/tex]
Since set [tex]\(\{c\}\)[/tex] is entirely contained within [tex]\(\{b, c, d\}\)[/tex], the statement is true:
[tex]\[ \{c\} \subset \{b, c, d\} \][/tex]
Statement (iv) is True.
### Statement (v)
[tex]\[ \{b\} \in \{a, b, c, d\} \][/tex]
The expression [tex]\(\{b\} \in \{a, b, c, d\}\)[/tex] means checking if the set [tex]\(\{b\}\)[/tex] itself is an element of the set [tex]\(\{a, b, c, d\}\)[/tex]. However, [tex]\(\{a, b, c, d\}\)[/tex] contains elements [tex]\(a, b, c, d\)[/tex] as individual elements, not as sets. Therefore:
[tex]\[ \{b\} \notin \{a, b, c, d\} \][/tex]
Statement (v) is False.
### Statement (vi)
[tex]\[ \{y : y \text{ is an even natural number less than 6}\} \subset \{y : y \text{ is a natural number which can divide } 36\} \][/tex]
The set of even natural numbers less than 6 is [tex]\(\{2, 4\}\)[/tex]. The natural numbers that divide 36 are [tex]\(\{1, 2, 3, 4, 6, 9, 12, 18, 36\}\)[/tex]. Since [tex]\(\{2, 4\}\)[/tex] is a subset of the divisors of 36:
[tex]\[ \{2, 4\} \subset \{1, 2, 3, 4, 6, 9, 12, 18, 36\} \][/tex]
Statement (vi) is True.
So, the final answers are:
[tex]\[ \text{(i) False, (ii) True, (iii) False, (iv) True, (v) False, (vi) True} \][/tex]
### Statement (i)
[tex]\[ \{b, c\} \subset \{c, d, e\} \][/tex]
A set [tex]\( A \)[/tex] is a subset of set [tex]\( B \)[/tex] (written as [tex]\( A \subset B \)[/tex]) if every element of [tex]\( A \)[/tex] is also an element of [tex]\( B \)[/tex]. Here, we can see that "b" is not an element of [tex]\(\{c, d, e\}\)[/tex]. Thus:
[tex]\[ \{b, c\} \not\subset \{c, d, e\} \][/tex]
Statement (i) is False.
### Statement (ii)
[tex]\[ \{a, e, i\} \subset \{x : x \text{ is a vowel in the English alphabet}\} \][/tex]
The set of vowels in the English alphabet is [tex]\(\{a, e, i, o, u\}\)[/tex]. Since [tex]\(\{a, e, i\}\)[/tex] is a subset of this set, the statement is true:
[tex]\[ \{a, e, i\} \subset \{a, e, i, o, u\} \][/tex]
Statement (ii) is True.
### Statement (iii)
[tex]\[ \{1, 2, 3\} \subset \{1, 2, 4, 5\} \][/tex]
For [tex]\(\{1, 2, 3\}\)[/tex] to be a subset of [tex]\(\{1, 2, 4, 5\}\)[/tex], every element in [tex]\(\{1, 2, 3\}\)[/tex] must be in [tex]\(\{1, 2, 4, 5\}\)[/tex]. However, 3 is not in [tex]\(\{1, 2, 4, 5\}\)[/tex], thus:
[tex]\[ \{1, 2, 3\} \not\subset \{1, 2, 4, 5\} \][/tex]
Statement (iii) is False.
### Statement (iv)
[tex]\[ \{c\} \subset \{b, c, d\} \][/tex]
Since set [tex]\(\{c\}\)[/tex] is entirely contained within [tex]\(\{b, c, d\}\)[/tex], the statement is true:
[tex]\[ \{c\} \subset \{b, c, d\} \][/tex]
Statement (iv) is True.
### Statement (v)
[tex]\[ \{b\} \in \{a, b, c, d\} \][/tex]
The expression [tex]\(\{b\} \in \{a, b, c, d\}\)[/tex] means checking if the set [tex]\(\{b\}\)[/tex] itself is an element of the set [tex]\(\{a, b, c, d\}\)[/tex]. However, [tex]\(\{a, b, c, d\}\)[/tex] contains elements [tex]\(a, b, c, d\)[/tex] as individual elements, not as sets. Therefore:
[tex]\[ \{b\} \notin \{a, b, c, d\} \][/tex]
Statement (v) is False.
### Statement (vi)
[tex]\[ \{y : y \text{ is an even natural number less than 6}\} \subset \{y : y \text{ is a natural number which can divide } 36\} \][/tex]
The set of even natural numbers less than 6 is [tex]\(\{2, 4\}\)[/tex]. The natural numbers that divide 36 are [tex]\(\{1, 2, 3, 4, 6, 9, 12, 18, 36\}\)[/tex]. Since [tex]\(\{2, 4\}\)[/tex] is a subset of the divisors of 36:
[tex]\[ \{2, 4\} \subset \{1, 2, 3, 4, 6, 9, 12, 18, 36\} \][/tex]
Statement (vi) is True.
So, the final answers are:
[tex]\[ \text{(i) False, (ii) True, (iii) False, (iv) True, (v) False, (vi) True} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.