Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to understand the concept of exponential decay. The area of undeveloped land decreases at a constant percentage rate annually, which we can model using the formula for exponential decay:
[tex]\[ A = A_0 \times (1 - r)^t \][/tex]
where:
- [tex]\( A_0 \)[/tex] is the initial amount of undeveloped land,
- [tex]\( A \)[/tex] is the remaining amount of undeveloped land after time [tex]\( t \)[/tex],
- [tex]\( r \)[/tex] is the annual decay rate,
- [tex]\( t \)[/tex] is the time in years.
In this scenario:
- The initial amount of undeveloped land [tex]\( A_0 \)[/tex] is 3400 acres.
- The remaining amount of undeveloped land [tex]\( A \)[/tex] is 900 acres.
- The annual decay rate [tex]\( r \)[/tex] is 17.3%, which can be represented as a decimal: [tex]\( 0.173 \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ 900 = 3400 \times (1 - 0.173)^t \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ 900 = 3400 \times (0.827)^t \][/tex]
This matches equation A:
[tex]\[ 900 = 3400(0.827)^t \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
[tex]\[ A = A_0 \times (1 - r)^t \][/tex]
where:
- [tex]\( A_0 \)[/tex] is the initial amount of undeveloped land,
- [tex]\( A \)[/tex] is the remaining amount of undeveloped land after time [tex]\( t \)[/tex],
- [tex]\( r \)[/tex] is the annual decay rate,
- [tex]\( t \)[/tex] is the time in years.
In this scenario:
- The initial amount of undeveloped land [tex]\( A_0 \)[/tex] is 3400 acres.
- The remaining amount of undeveloped land [tex]\( A \)[/tex] is 900 acres.
- The annual decay rate [tex]\( r \)[/tex] is 17.3%, which can be represented as a decimal: [tex]\( 0.173 \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ 900 = 3400 \times (1 - 0.173)^t \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ 900 = 3400 \times (0.827)^t \][/tex]
This matches equation A:
[tex]\[ 900 = 3400(0.827)^t \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.