At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we need to analyze where the expression under the cube root is defined and produces real numbers.
The function given is [tex]\(y = \sqrt[3]{x-1}\)[/tex]. Let's break it down step by step:
1. Identify the Core Operation: The function involves a cube root, specifically [tex]\(\sqrt[3]{x-1}\)[/tex].
2. Characteristics of Cube Root Function: The cube root function, [tex]\(\sqrt[3]{u}\)[/tex], is defined for all real numbers [tex]\(u\)[/tex]. This means that there are no restrictions on [tex]\(u\)[/tex] because the cube root of any real number [tex]\(u\)[/tex] (positive, negative, or zero) is also a real number.
3. Translate to the Given Function: For the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we substitute [tex]\(u = x-1\)[/tex]. Given that the cube root function does not impose any restrictions, [tex]\(u = x-1\)[/tex] can be any real number.
4. Solving for [tex]\(x\)[/tex]: Since [tex]\(x-1\)[/tex] can be any real number, solving for [tex]\(x\)[/tex] yields:
[tex]\[ x-1 \in \mathbb{R} \][/tex]
where [tex]\(\mathbb{R}\)[/tex] denotes the set of all real numbers. Adding 1 to both sides, we get:
[tex]\[ x \in \mathbb{R} \][/tex]
Thus, the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex] is all real numbers. In interval notation, this is expressed as:
[tex]\[ (-\infty, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]
The function given is [tex]\(y = \sqrt[3]{x-1}\)[/tex]. Let's break it down step by step:
1. Identify the Core Operation: The function involves a cube root, specifically [tex]\(\sqrt[3]{x-1}\)[/tex].
2. Characteristics of Cube Root Function: The cube root function, [tex]\(\sqrt[3]{u}\)[/tex], is defined for all real numbers [tex]\(u\)[/tex]. This means that there are no restrictions on [tex]\(u\)[/tex] because the cube root of any real number [tex]\(u\)[/tex] (positive, negative, or zero) is also a real number.
3. Translate to the Given Function: For the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we substitute [tex]\(u = x-1\)[/tex]. Given that the cube root function does not impose any restrictions, [tex]\(u = x-1\)[/tex] can be any real number.
4. Solving for [tex]\(x\)[/tex]: Since [tex]\(x-1\)[/tex] can be any real number, solving for [tex]\(x\)[/tex] yields:
[tex]\[ x-1 \in \mathbb{R} \][/tex]
where [tex]\(\mathbb{R}\)[/tex] denotes the set of all real numbers. Adding 1 to both sides, we get:
[tex]\[ x \in \mathbb{R} \][/tex]
Thus, the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex] is all real numbers. In interval notation, this is expressed as:
[tex]\[ (-\infty, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.