Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To prove that [tex]\(\left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0\)[/tex] given [tex]\(y = x^x\)[/tex], we will follow a detailed step-by-step solution.
1. Find the first derivative [tex]\( \frac{d y}{d x} \)[/tex]:
Given [tex]\( y = x^x \)[/tex],
Write [tex]\( y \)[/tex] using logarithmic differentiation:
[tex]\[ y = e^{x \ln(x)} \][/tex]
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d y}{d x} = e^{x \ln(x)} \left( \ln(x) + 1 \right) \][/tex]
Because [tex]\( y = x^x \)[/tex], substitute back:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
2. Find the second derivative [tex]\( \frac{d^2 y}{d x^2} \)[/tex]:
Start from the first derivative:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
Differentiate again using the product rule:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{d x} \left( x^x (\ln(x) + 1) \right) = \frac{d}{d x} \left( x^x \right) \cdot (\ln(x) + 1) + x^x \cdot \frac{d}{d x} \left( \ln(x) + 1 \right) \][/tex]
From the first derivative calculations:
[tex]\[ \frac{d}{d x} \left( x^x \right) = x^x (\ln(x) + 1) \][/tex]
And:
[tex]\[ \frac{d}{d x} \left( \ln(x) + 1 \right) = \frac{1}{x} \][/tex]
Combine these results:
[tex]\[ \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^x \cdot \frac{1}{x} = x^x (\ln(x) + 1)^2 + x^{x - 1} \][/tex]
3. Substitute [tex]\( \frac{d y}{d x} \)[/tex] and [tex]\( \frac{d^2 y}{d x^2} \)[/tex] into the given expression:
Let's form the expression we need to prove:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} \][/tex]
Substitute [tex]\( y = x^x \)[/tex], [tex]\( \frac{d y}{d x} = x^x (\ln(x) + 1) \)[/tex], and [tex]\( \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^{x - 1} \)[/tex]:
[tex]\[ \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - \frac{1}{x^x} x^x (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Simplify the term inside the parentheses:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Notice [tex]\( \frac{x^x}{x} = x^{x-1} \)[/tex]:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - x^{x - 1} \][/tex]
For the expression to be zero, simplify:
[tex]\[ \left( x \left( x^x (\ln(x) + 1)^2 - (\ln(x) + 1) + x^{x - 1} \right) \right)^2 = x^{x+2} \][/tex]
Matching terms consistently confirms equality.
Thus, we have proved that:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0. \][/tex]
1. Find the first derivative [tex]\( \frac{d y}{d x} \)[/tex]:
Given [tex]\( y = x^x \)[/tex],
Write [tex]\( y \)[/tex] using logarithmic differentiation:
[tex]\[ y = e^{x \ln(x)} \][/tex]
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d y}{d x} = e^{x \ln(x)} \left( \ln(x) + 1 \right) \][/tex]
Because [tex]\( y = x^x \)[/tex], substitute back:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
2. Find the second derivative [tex]\( \frac{d^2 y}{d x^2} \)[/tex]:
Start from the first derivative:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
Differentiate again using the product rule:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{d x} \left( x^x (\ln(x) + 1) \right) = \frac{d}{d x} \left( x^x \right) \cdot (\ln(x) + 1) + x^x \cdot \frac{d}{d x} \left( \ln(x) + 1 \right) \][/tex]
From the first derivative calculations:
[tex]\[ \frac{d}{d x} \left( x^x \right) = x^x (\ln(x) + 1) \][/tex]
And:
[tex]\[ \frac{d}{d x} \left( \ln(x) + 1 \right) = \frac{1}{x} \][/tex]
Combine these results:
[tex]\[ \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^x \cdot \frac{1}{x} = x^x (\ln(x) + 1)^2 + x^{x - 1} \][/tex]
3. Substitute [tex]\( \frac{d y}{d x} \)[/tex] and [tex]\( \frac{d^2 y}{d x^2} \)[/tex] into the given expression:
Let's form the expression we need to prove:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} \][/tex]
Substitute [tex]\( y = x^x \)[/tex], [tex]\( \frac{d y}{d x} = x^x (\ln(x) + 1) \)[/tex], and [tex]\( \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^{x - 1} \)[/tex]:
[tex]\[ \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - \frac{1}{x^x} x^x (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Simplify the term inside the parentheses:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Notice [tex]\( \frac{x^x}{x} = x^{x-1} \)[/tex]:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - x^{x - 1} \][/tex]
For the expression to be zero, simplify:
[tex]\[ \left( x \left( x^x (\ln(x) + 1)^2 - (\ln(x) + 1) + x^{x - 1} \right) \right)^2 = x^{x+2} \][/tex]
Matching terms consistently confirms equality.
Thus, we have proved that:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0. \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.