Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which set of rational numbers is ordered from least to greatest, we first need to understand the value of each fraction:
1. The number [tex]\(-1\)[/tex] is simply [tex]\(-1\)[/tex].
2. The number [tex]\(-1 \frac{1}{2}\)[/tex] can be written as [tex]\(-1 - \frac{1}{2} = -1.5\)[/tex].
3. The number [tex]\(-1 \frac{1}{4}\)[/tex] can be written as [tex]\(-1 - \frac{1}{4} = -1.25\)[/tex].
4. The number [tex]\(-1 \frac{7}{8}\)[/tex] can be written as [tex]\(-1 - \frac{7}{8} = -1.875\)[/tex].
With these conversions, we compare the decimal values to sort the numbers from least to greatest. Here are the decimal equivalents:
- [tex]\(-1\)[/tex] is [tex]\(-1\)[/tex]
- [tex]\(-1 \frac{1}{2}\)[/tex] is [tex]\(-1.5\)[/tex]
- [tex]\(-1 \frac{1}{4}\)[/tex] is [tex]\(-1.25\)[/tex]
- [tex]\(-1 \frac{7}{8}\)[/tex] is [tex]\(-1.875\)[/tex]
Ordering these from least to greatest:
- [tex]\(-1.875\)[/tex] (i.e., [tex]\(-1 \frac{7}{8}\)[/tex])
- [tex]\(-1.5\)[/tex] (i.e., [tex]\(-1 \frac{1}{2}\)[/tex])
- [tex]\(-1.25\)[/tex] (i.e., [tex]\(-1 \frac{1}{4}\)[/tex])
- [tex]\(-1\)[/tex] (i.e., [tex]\(-1\)[/tex])
Now let's compare this ordered sequence with the given sets:
1. [tex]\(-1, -1 \frac{1}{2}, -1 \frac{1}{4}, -1 \frac{7}{8}\)[/tex]
- This sequence is [tex]\(-1, -1.5, -1.25, -1.875\)[/tex], which is not in ascending order.
2. [tex]\(-1 \frac{7}{8}, -1 \frac{1}{2}, -1 \frac{1}{4}, -1\)[/tex]
- This sequence is [tex]\(-1.875, -1.5, -1.25, -1\)[/tex], which is correctly ordered in ascending order.
3. [tex]\(-1, -1 \frac{1}{4}, -1 \frac{1}{2}, -1 \frac{7}{8}\)[/tex]
- This sequence is [tex]\(-1, -1.25, -1.5, -1.875\)[/tex], which is not in ascending order.
4. [tex]\(-1 \frac{7}{8}, -1 \frac{1}{4}, -1 \frac{1}{2}, -1\)[/tex]
- This sequence is [tex]\(-1.875, -1.25, -1.5, -1\)[/tex], which is not in ascending order.
Based on this analysis, the set that is in ascending order is:
[tex]\[ \boxed{-1 \frac{7}{8},-1 \frac{1}{2},-1 \frac{1}{4},-1} \][/tex]
1. The number [tex]\(-1\)[/tex] is simply [tex]\(-1\)[/tex].
2. The number [tex]\(-1 \frac{1}{2}\)[/tex] can be written as [tex]\(-1 - \frac{1}{2} = -1.5\)[/tex].
3. The number [tex]\(-1 \frac{1}{4}\)[/tex] can be written as [tex]\(-1 - \frac{1}{4} = -1.25\)[/tex].
4. The number [tex]\(-1 \frac{7}{8}\)[/tex] can be written as [tex]\(-1 - \frac{7}{8} = -1.875\)[/tex].
With these conversions, we compare the decimal values to sort the numbers from least to greatest. Here are the decimal equivalents:
- [tex]\(-1\)[/tex] is [tex]\(-1\)[/tex]
- [tex]\(-1 \frac{1}{2}\)[/tex] is [tex]\(-1.5\)[/tex]
- [tex]\(-1 \frac{1}{4}\)[/tex] is [tex]\(-1.25\)[/tex]
- [tex]\(-1 \frac{7}{8}\)[/tex] is [tex]\(-1.875\)[/tex]
Ordering these from least to greatest:
- [tex]\(-1.875\)[/tex] (i.e., [tex]\(-1 \frac{7}{8}\)[/tex])
- [tex]\(-1.5\)[/tex] (i.e., [tex]\(-1 \frac{1}{2}\)[/tex])
- [tex]\(-1.25\)[/tex] (i.e., [tex]\(-1 \frac{1}{4}\)[/tex])
- [tex]\(-1\)[/tex] (i.e., [tex]\(-1\)[/tex])
Now let's compare this ordered sequence with the given sets:
1. [tex]\(-1, -1 \frac{1}{2}, -1 \frac{1}{4}, -1 \frac{7}{8}\)[/tex]
- This sequence is [tex]\(-1, -1.5, -1.25, -1.875\)[/tex], which is not in ascending order.
2. [tex]\(-1 \frac{7}{8}, -1 \frac{1}{2}, -1 \frac{1}{4}, -1\)[/tex]
- This sequence is [tex]\(-1.875, -1.5, -1.25, -1\)[/tex], which is correctly ordered in ascending order.
3. [tex]\(-1, -1 \frac{1}{4}, -1 \frac{1}{2}, -1 \frac{7}{8}\)[/tex]
- This sequence is [tex]\(-1, -1.25, -1.5, -1.875\)[/tex], which is not in ascending order.
4. [tex]\(-1 \frac{7}{8}, -1 \frac{1}{4}, -1 \frac{1}{2}, -1\)[/tex]
- This sequence is [tex]\(-1.875, -1.25, -1.5, -1\)[/tex], which is not in ascending order.
Based on this analysis, the set that is in ascending order is:
[tex]\[ \boxed{-1 \frac{7}{8},-1 \frac{1}{2},-1 \frac{1}{4},-1} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.