Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which algebraic expressions are binomials, we need to understand the definition of a binomial. A binomial is an algebraic expression that consists of exactly two terms joined by a plus (+) or minus (−) sign.
Let's examine each of the given expressions to check if they fit this definition:
1. Expression: [tex]\( x y^{\sqrt{8}} \)[/tex]
- This expression consists of a single term: [tex]\( x y^{\sqrt{8}} \)[/tex]. Therefore, it is not a binomial.
2. Expression: [tex]\( x^2 y - 3 x \)[/tex]
- This expression consists of two terms: [tex]\( x^2 y \)[/tex] and [tex]\( -3 x \)[/tex]. Therefore, it is a binomial.
3. Expression: [tex]\( 6 y^2 - y \)[/tex]
- This expression consists of two terms: [tex]\( 6 y^2 \)[/tex] and [tex]\( -y \)[/tex]. Therefore, it is a binomial.
4. Expression: [tex]\( y^2 + \sqrt{y} \)[/tex]
- This expression consists of two terms: [tex]\( y^2 \)[/tex] and [tex]\( \sqrt{y} \)[/tex]. Therefore, it is a binomial.
5. Expression: [tex]\( 4 x y - \frac{2}{5} \)[/tex]
- This expression consists of two terms: [tex]\( 4 x y \)[/tex] and [tex]\( -\frac{2}{5} \)[/tex]. Therefore, it is a binomial.
6. Expression: [tex]\( x^2 + \frac{3}{x} \)[/tex]
- This expression consists of two terms: [tex]\( x^2 \)[/tex] and [tex]\( \frac{3}{x} \)[/tex]. Therefore, it is a binomial.
Based on our examination, the following expressions are binomials:
- [tex]\( x^2 y - 3 x \)[/tex]
- [tex]\( 6 y^2 - y \)[/tex]
- [tex]\( y^2 + \sqrt{y} \)[/tex]
- [tex]\( 4 x y - \frac{2}{5} \)[/tex]
- [tex]\( x^2 + \frac{3}{x} \)[/tex]
Thus, all the given expressions except the first one, [tex]\( x y^{\sqrt{8}} \)[/tex], are binomials. The expressions that are binomials are:
[tex]\[ \boxed{2, 3, 4, 5, 6} \][/tex]
Let's examine each of the given expressions to check if they fit this definition:
1. Expression: [tex]\( x y^{\sqrt{8}} \)[/tex]
- This expression consists of a single term: [tex]\( x y^{\sqrt{8}} \)[/tex]. Therefore, it is not a binomial.
2. Expression: [tex]\( x^2 y - 3 x \)[/tex]
- This expression consists of two terms: [tex]\( x^2 y \)[/tex] and [tex]\( -3 x \)[/tex]. Therefore, it is a binomial.
3. Expression: [tex]\( 6 y^2 - y \)[/tex]
- This expression consists of two terms: [tex]\( 6 y^2 \)[/tex] and [tex]\( -y \)[/tex]. Therefore, it is a binomial.
4. Expression: [tex]\( y^2 + \sqrt{y} \)[/tex]
- This expression consists of two terms: [tex]\( y^2 \)[/tex] and [tex]\( \sqrt{y} \)[/tex]. Therefore, it is a binomial.
5. Expression: [tex]\( 4 x y - \frac{2}{5} \)[/tex]
- This expression consists of two terms: [tex]\( 4 x y \)[/tex] and [tex]\( -\frac{2}{5} \)[/tex]. Therefore, it is a binomial.
6. Expression: [tex]\( x^2 + \frac{3}{x} \)[/tex]
- This expression consists of two terms: [tex]\( x^2 \)[/tex] and [tex]\( \frac{3}{x} \)[/tex]. Therefore, it is a binomial.
Based on our examination, the following expressions are binomials:
- [tex]\( x^2 y - 3 x \)[/tex]
- [tex]\( 6 y^2 - y \)[/tex]
- [tex]\( y^2 + \sqrt{y} \)[/tex]
- [tex]\( 4 x y - \frac{2}{5} \)[/tex]
- [tex]\( x^2 + \frac{3}{x} \)[/tex]
Thus, all the given expressions except the first one, [tex]\( x y^{\sqrt{8}} \)[/tex], are binomials. The expressions that are binomials are:
[tex]\[ \boxed{2, 3, 4, 5, 6} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.