Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given the function [tex]\( f(x) = a \sqrt{x + b} \)[/tex] and the points through which the graph passes, we can determine the nature of the constants [tex]\( a \)[/tex] and [tex]\( b \)[/tex].
First, let's use the information that the graph passes through the point [tex]\((-24, 0)\)[/tex]. This means that when [tex]\( x = -24 \)[/tex], [tex]\( f(x) = 0 \)[/tex].
[tex]\[ f(-24) = a \sqrt{-24 + b} = 0 \][/tex]
Since [tex]\( \sqrt{-24 + b} = 0 \)[/tex], we have:
[tex]\[ -24 + b = 0 \implies b = 24 \][/tex]
So, we have determined that [tex]\( b = 24 \)[/tex].
Next, we were given that [tex]\( f(24) < 0 \)[/tex]. Let's use this condition to understand the nature of [tex]\( a \)[/tex].
[tex]\[ f(24) = a \sqrt{24 + b} = a \sqrt{24 + 24} = a \sqrt{48} \][/tex]
Since [tex]\( \sqrt{48} \)[/tex] is positive, for [tex]\( f(24) < 0 \)[/tex], it must be that [tex]\( a \)[/tex] is negative. Thus,
[tex]\[ a < 0 \][/tex]
With [tex]\( b = 24 \)[/tex] and [tex]\( a < 0 \)[/tex], let's now evaluate the options provided:
- Option (A) [tex]\( f(0) = 24 \)[/tex]:
[tex]\[ f(0) = a \sqrt{0 + b} = a \sqrt{24} \][/tex]
Since [tex]\( a < 0 \)[/tex], [tex]\( a \sqrt{24} \)[/tex] cannot be 24 because it would be a positive number if [tex]\( a \)[/tex] were positive, which is not the case here. So, this option is incorrect.
- Option (B) [tex]\( f(0) = -24 \)[/tex]:
[tex]\[ f(0) = a \sqrt{0 + b} = a \sqrt{24} \][/tex]
We need to check if this equals -24:
[tex]\[ a \sqrt{24} = -24 \implies a = -\frac{24}{\sqrt{24}} = -\sqrt{24} \][/tex]
Given [tex]\( \sqrt{24} \)[/tex] is positive and [tex]\( a = -\sqrt{24} \)[/tex] is indeed negative, so [tex]\( f(0) = -24 \)[/tex] is a valid option.
- Option (C) [tex]\( a > b \)[/tex]:
We know [tex]\( a < 0 \)[/tex] and [tex]\( b = 24 \)[/tex]. Clearly [tex]\( a \)[/tex] is not greater than [tex]\( b \)[/tex] because [tex]\( a < 0 \)[/tex] and [tex]\( b = 24 \)[/tex]. So this option is incorrect.
- Option (D) [tex]\( a < b \)[/tex]:
As [tex]\( a < 0 \)[/tex] and [tex]\( b = 24 \)[/tex], it is true that [tex]\( a < b \)[/tex].
Thus, the options that are true based on the given conditions are:
- [tex]\( f(0) = -24 \)[/tex]
- [tex]\( a < b \)[/tex]
Thus the correct answers must include:
(B) [tex]\( f(0) = -24 \)[/tex]
(D) [tex]\( a < b \)[/tex]
First, let's use the information that the graph passes through the point [tex]\((-24, 0)\)[/tex]. This means that when [tex]\( x = -24 \)[/tex], [tex]\( f(x) = 0 \)[/tex].
[tex]\[ f(-24) = a \sqrt{-24 + b} = 0 \][/tex]
Since [tex]\( \sqrt{-24 + b} = 0 \)[/tex], we have:
[tex]\[ -24 + b = 0 \implies b = 24 \][/tex]
So, we have determined that [tex]\( b = 24 \)[/tex].
Next, we were given that [tex]\( f(24) < 0 \)[/tex]. Let's use this condition to understand the nature of [tex]\( a \)[/tex].
[tex]\[ f(24) = a \sqrt{24 + b} = a \sqrt{24 + 24} = a \sqrt{48} \][/tex]
Since [tex]\( \sqrt{48} \)[/tex] is positive, for [tex]\( f(24) < 0 \)[/tex], it must be that [tex]\( a \)[/tex] is negative. Thus,
[tex]\[ a < 0 \][/tex]
With [tex]\( b = 24 \)[/tex] and [tex]\( a < 0 \)[/tex], let's now evaluate the options provided:
- Option (A) [tex]\( f(0) = 24 \)[/tex]:
[tex]\[ f(0) = a \sqrt{0 + b} = a \sqrt{24} \][/tex]
Since [tex]\( a < 0 \)[/tex], [tex]\( a \sqrt{24} \)[/tex] cannot be 24 because it would be a positive number if [tex]\( a \)[/tex] were positive, which is not the case here. So, this option is incorrect.
- Option (B) [tex]\( f(0) = -24 \)[/tex]:
[tex]\[ f(0) = a \sqrt{0 + b} = a \sqrt{24} \][/tex]
We need to check if this equals -24:
[tex]\[ a \sqrt{24} = -24 \implies a = -\frac{24}{\sqrt{24}} = -\sqrt{24} \][/tex]
Given [tex]\( \sqrt{24} \)[/tex] is positive and [tex]\( a = -\sqrt{24} \)[/tex] is indeed negative, so [tex]\( f(0) = -24 \)[/tex] is a valid option.
- Option (C) [tex]\( a > b \)[/tex]:
We know [tex]\( a < 0 \)[/tex] and [tex]\( b = 24 \)[/tex]. Clearly [tex]\( a \)[/tex] is not greater than [tex]\( b \)[/tex] because [tex]\( a < 0 \)[/tex] and [tex]\( b = 24 \)[/tex]. So this option is incorrect.
- Option (D) [tex]\( a < b \)[/tex]:
As [tex]\( a < 0 \)[/tex] and [tex]\( b = 24 \)[/tex], it is true that [tex]\( a < b \)[/tex].
Thus, the options that are true based on the given conditions are:
- [tex]\( f(0) = -24 \)[/tex]
- [tex]\( a < b \)[/tex]
Thus the correct answers must include:
(B) [tex]\( f(0) = -24 \)[/tex]
(D) [tex]\( a < b \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.