Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the equation [tex]\(\log_{16} 4 = x\)[/tex] step-by-step.
### Step 1: Understanding the Logarithmic Form
The equation [tex]\(\log_{16} 4 = x\)[/tex] means that we are looking for the exponent [tex]\(x\)[/tex] such that [tex]\(16\)[/tex] raised to the power [tex]\(x\)[/tex] equals [tex]\(4\)[/tex]. In other words,
[tex]\[ 16^x = 4 \][/tex]
### Step 2: Expressing the Base in Terms of Powers
To solve this, it helps to express both 16 and 4 as powers of a common base. Notice:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 4 = 2^2 \][/tex]
### Step 3: Substitute and Simplify
Now substitute these expressions back into the equation:
[tex]\[ (2^4)^x = 2^2 \][/tex]
### Step 4: Simplifying the Powers
Using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex], we get:
[tex]\[ 2^{4x} = 2^2 \][/tex]
### Step 5: Equating Exponents
Because the bases are the same (both are [tex]\(2\)[/tex]), we can set the exponents equal to each other:
[tex]\[ 4x = 2 \][/tex]
### Step 6: Solving for [tex]\(x\)[/tex]
Now solve for [tex]\(x\)[/tex] by dividing both sides of the equation by 4:
[tex]\[ x = \frac{2}{4} \][/tex]
[tex]\[ x = \frac{1}{2} \][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = 0.5 \][/tex]
Thus, we have:
[tex]\[ \log_{16} 4 = 0.5 \][/tex]
### Step 1: Understanding the Logarithmic Form
The equation [tex]\(\log_{16} 4 = x\)[/tex] means that we are looking for the exponent [tex]\(x\)[/tex] such that [tex]\(16\)[/tex] raised to the power [tex]\(x\)[/tex] equals [tex]\(4\)[/tex]. In other words,
[tex]\[ 16^x = 4 \][/tex]
### Step 2: Expressing the Base in Terms of Powers
To solve this, it helps to express both 16 and 4 as powers of a common base. Notice:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 4 = 2^2 \][/tex]
### Step 3: Substitute and Simplify
Now substitute these expressions back into the equation:
[tex]\[ (2^4)^x = 2^2 \][/tex]
### Step 4: Simplifying the Powers
Using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex], we get:
[tex]\[ 2^{4x} = 2^2 \][/tex]
### Step 5: Equating Exponents
Because the bases are the same (both are [tex]\(2\)[/tex]), we can set the exponents equal to each other:
[tex]\[ 4x = 2 \][/tex]
### Step 6: Solving for [tex]\(x\)[/tex]
Now solve for [tex]\(x\)[/tex] by dividing both sides of the equation by 4:
[tex]\[ x = \frac{2}{4} \][/tex]
[tex]\[ x = \frac{1}{2} \][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = 0.5 \][/tex]
Thus, we have:
[tex]\[ \log_{16} 4 = 0.5 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.