Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine how many moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) are formed when 183.5 grams of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]) react with excess hydrobromic acid ([tex]\( \text{HBr} \)[/tex]), we follow these steps:
1. Calculate the molar mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]):
- Barium (Ba) has an atomic mass of approximately 137.34 g/mol.
- Oxygen (O) has an atomic mass of approximately 16.00 g/mol.
- Hydrogen (H) has an atomic mass of approximately 1.01 g/mol.
Therefore, the molar mass of [tex]\( \text{Ba(OH)}_2 \)[/tex] is:
[tex]\[ \text{Molar mass of Ba(OH)}_2 = 137.34 + 2(\text{1 oxygen} \times 16.00 + \text{1 hydrogen} \times 1.01) = 137.34 + 2 \times (16.00 + 1.01) = 137.34 + 34.00 = 171.34 \, \text{g/mol} \][/tex]
2. Convert the mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]) to moles:
- Given mass of [tex]\( \text{Ba(OH)}_2 = 183.5 \, \text{g} \)[/tex]
- Molar mass of [tex]\( \text{Ba(OH)}_2 = 171.34 \, \text{g/mol} \)[/tex]
The number of moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] is calculated by:
[tex]\[ \text{Moles of Ba(OH)}_2 = \frac{183.5 \, \text{g}}{171.34 \, \text{g/mol}} \approx 1.071 \, \text{mol} \][/tex]
3. Use the stoichiometric relationship from the balanced chemical equation:
- The balanced chemical equation is:
[tex]\[ 2 \, \text{HBr} + \text{Ba(OH)}_2 \rightarrow \text{BaBr}_2 + 2 \, \text{H}_2\text{O} \][/tex]
According to the balanced equation, 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex] produces 2 moles of [tex]\( \text{H}_2\text{O} \)[/tex].
4. Calculate the moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) produced:
- We have [tex]\( 1.071 \, \text{moles of Ba(OH)}_2 \)[/tex].
- Therefore, the moles of water produced are:
[tex]\[ \text{Moles of H}_2\text{O} = 2 \times 1.071 \approx 2.142 \, \text{mol} \][/tex]
Hence, 2.142 moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) are formed when 183.5 g of [tex]\( \text{Ba(OH)}_2 \)[/tex] reacts with excess [tex]\( \text{HBr} \)[/tex].
1. Calculate the molar mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]):
- Barium (Ba) has an atomic mass of approximately 137.34 g/mol.
- Oxygen (O) has an atomic mass of approximately 16.00 g/mol.
- Hydrogen (H) has an atomic mass of approximately 1.01 g/mol.
Therefore, the molar mass of [tex]\( \text{Ba(OH)}_2 \)[/tex] is:
[tex]\[ \text{Molar mass of Ba(OH)}_2 = 137.34 + 2(\text{1 oxygen} \times 16.00 + \text{1 hydrogen} \times 1.01) = 137.34 + 2 \times (16.00 + 1.01) = 137.34 + 34.00 = 171.34 \, \text{g/mol} \][/tex]
2. Convert the mass of barium hydroxide ([tex]\( \text{Ba(OH)}_2 \)[/tex]) to moles:
- Given mass of [tex]\( \text{Ba(OH)}_2 = 183.5 \, \text{g} \)[/tex]
- Molar mass of [tex]\( \text{Ba(OH)}_2 = 171.34 \, \text{g/mol} \)[/tex]
The number of moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] is calculated by:
[tex]\[ \text{Moles of Ba(OH)}_2 = \frac{183.5 \, \text{g}}{171.34 \, \text{g/mol}} \approx 1.071 \, \text{mol} \][/tex]
3. Use the stoichiometric relationship from the balanced chemical equation:
- The balanced chemical equation is:
[tex]\[ 2 \, \text{HBr} + \text{Ba(OH)}_2 \rightarrow \text{BaBr}_2 + 2 \, \text{H}_2\text{O} \][/tex]
According to the balanced equation, 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex] produces 2 moles of [tex]\( \text{H}_2\text{O} \)[/tex].
4. Calculate the moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) produced:
- We have [tex]\( 1.071 \, \text{moles of Ba(OH)}_2 \)[/tex].
- Therefore, the moles of water produced are:
[tex]\[ \text{Moles of H}_2\text{O} = 2 \times 1.071 \approx 2.142 \, \text{mol} \][/tex]
Hence, 2.142 moles of water ([tex]\( \text{H}_2\text{O} \)[/tex]) are formed when 183.5 g of [tex]\( \text{Ba(OH)}_2 \)[/tex] reacts with excess [tex]\( \text{HBr} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.