Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the radius [tex]\( r \)[/tex] that minimizes the total surface area [tex]\( S \)[/tex] of the cylindrical container, we'll follow a systematic approach. Given the total surface area function:
[tex]\[ S = 2 \pi r^2 + \frac{100}{r} \][/tex]
we need to find the radius [tex]\( r \)[/tex] that minimizes this function. Let's break this down step-by-step:
### Step 1: Define the Surface Area Function
The surface area [tex]\( S \)[/tex] is a function of the radius [tex]\( r \)[/tex]:
[tex]\[ S(r) = 2 \pi r^2 + \frac{100}{r} \][/tex]
### Step 2: Find the First Derivative
To find the critical points where [tex]\( S \)[/tex] might be minimized, we need to find the first derivative of [tex]\( S \)[/tex] with respect to [tex]\( r \)[/tex]:
[tex]\[ S'(r) = \frac{d}{dr} \left( 2 \pi r^2 + \frac{100}{r} \right) \][/tex]
Using the power rule and the quotient rule, we get:
[tex]\[ S'(r) = 4 \pi r - \frac{100}{r^2} \][/tex]
### Step 3: Solve for Critical Points
Set the first derivative equal to zero and solve for [tex]\( r \)[/tex]:
[tex]\[ 4 \pi r - \frac{100}{r^2} = 0 \][/tex]
This can be rearranged to:
[tex]\[ 4 \pi r = \frac{100}{r^2} \][/tex]
Multiply both sides by [tex]\( r^2 \)[/tex] to get rid of the denominator:
[tex]\[ 4 \pi r^3 = 100 \][/tex]
Divide both sides by [tex]\( 4 \pi \)[/tex]:
[tex]\[ r^3 = \frac{100}{4 \pi} \][/tex]
Simplify:
[tex]\[ r^3 = \frac{25}{\pi} \][/tex]
To solve for [tex]\( r \)[/tex], take the cube root of both sides:
[tex]\[ r = \left(\frac{25}{\pi}\right)^{\frac{1}{3}} = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
### Step 4: Verify it is a Minimum
To confirm that this critical point gives a minimum surface area, we need to check the second derivative of [tex]\( S \)[/tex]:
[tex]\[ S''(r) = \frac{d}{dr} \left( 4 \pi r - \frac{100}{r^2} \right) \][/tex]
Differentiate again:
[tex]\[ S''(r) = 4 \pi + \frac{200}{r^3} \][/tex]
Evaluate [tex]\( S''(r) \)[/tex] at [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3} \][/tex]
Since [tex]\( \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3 = \frac{25}{\pi} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\frac{25}{\pi}} = 4 \pi + 8 \pi = 12 \pi \][/tex]
The second derivative [tex]\( S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 12 \pi \)[/tex] is positive, confirming that [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] is a minimum.
### Conclusion
The radius [tex]\( r \)[/tex] of the cylindrical container that minimizes the surface area is:
[tex]\[ r = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
The minimum surface area can be found by substituting this [tex]\( r \)[/tex] back into the original surface area function:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \pi \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 + \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} \][/tex]
Simplify each term:
[tex]\[ \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 = \frac{5^{4/3}}{\pi^{2/3}} \][/tex]
So,
[tex]\[ 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \cdot 5^{4/3} \pi^{1/3} \][/tex]
Similarly,
[tex]\[ \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} = 100 \cdot \frac{\pi^{1/3}}{5^{2/3}} = 100 \cdot 5^{-2/3} \pi^{1/3} = 20 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Adding these terms together gives the minimum surface area:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \cdot 5^{4/3} \pi^{1/3} + 20 \cdot 5^{1/3} \pi^{1/3} = 30 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Thus, the radius that minimizes the surface area is [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] and the minimum surface area is [tex]\( 30 \cdot 5^{1/3} \pi^{1/3} \)[/tex] cm[tex]\(^2\)[/tex].
[tex]\[ S = 2 \pi r^2 + \frac{100}{r} \][/tex]
we need to find the radius [tex]\( r \)[/tex] that minimizes this function. Let's break this down step-by-step:
### Step 1: Define the Surface Area Function
The surface area [tex]\( S \)[/tex] is a function of the radius [tex]\( r \)[/tex]:
[tex]\[ S(r) = 2 \pi r^2 + \frac{100}{r} \][/tex]
### Step 2: Find the First Derivative
To find the critical points where [tex]\( S \)[/tex] might be minimized, we need to find the first derivative of [tex]\( S \)[/tex] with respect to [tex]\( r \)[/tex]:
[tex]\[ S'(r) = \frac{d}{dr} \left( 2 \pi r^2 + \frac{100}{r} \right) \][/tex]
Using the power rule and the quotient rule, we get:
[tex]\[ S'(r) = 4 \pi r - \frac{100}{r^2} \][/tex]
### Step 3: Solve for Critical Points
Set the first derivative equal to zero and solve for [tex]\( r \)[/tex]:
[tex]\[ 4 \pi r - \frac{100}{r^2} = 0 \][/tex]
This can be rearranged to:
[tex]\[ 4 \pi r = \frac{100}{r^2} \][/tex]
Multiply both sides by [tex]\( r^2 \)[/tex] to get rid of the denominator:
[tex]\[ 4 \pi r^3 = 100 \][/tex]
Divide both sides by [tex]\( 4 \pi \)[/tex]:
[tex]\[ r^3 = \frac{100}{4 \pi} \][/tex]
Simplify:
[tex]\[ r^3 = \frac{25}{\pi} \][/tex]
To solve for [tex]\( r \)[/tex], take the cube root of both sides:
[tex]\[ r = \left(\frac{25}{\pi}\right)^{\frac{1}{3}} = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
### Step 4: Verify it is a Minimum
To confirm that this critical point gives a minimum surface area, we need to check the second derivative of [tex]\( S \)[/tex]:
[tex]\[ S''(r) = \frac{d}{dr} \left( 4 \pi r - \frac{100}{r^2} \right) \][/tex]
Differentiate again:
[tex]\[ S''(r) = 4 \pi + \frac{200}{r^3} \][/tex]
Evaluate [tex]\( S''(r) \)[/tex] at [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3} \][/tex]
Since [tex]\( \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^3 = \frac{25}{\pi} \)[/tex]:
[tex]\[ S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 4 \pi + \frac{200}{\frac{25}{\pi}} = 4 \pi + 8 \pi = 12 \pi \][/tex]
The second derivative [tex]\( S''\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 12 \pi \)[/tex] is positive, confirming that [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] is a minimum.
### Conclusion
The radius [tex]\( r \)[/tex] of the cylindrical container that minimizes the surface area is:
[tex]\[ r = \frac{5^{2/3}}{\pi^{1/3}} \][/tex]
The minimum surface area can be found by substituting this [tex]\( r \)[/tex] back into the original surface area function:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \pi \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 + \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} \][/tex]
Simplify each term:
[tex]\[ \left(\frac{5^{2/3}}{\pi^{1/3}}\right)^2 = \frac{5^{4/3}}{\pi^{2/3}} \][/tex]
So,
[tex]\[ 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \pi \cdot \frac{5^{4/3}}{\pi^{2/3}} = 2 \cdot 5^{4/3} \pi^{1/3} \][/tex]
Similarly,
[tex]\[ \frac{100}{\frac{5^{2/3}}{\pi^{1/3}}} = 100 \cdot \frac{\pi^{1/3}}{5^{2/3}} = 100 \cdot 5^{-2/3} \pi^{1/3} = 20 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Adding these terms together gives the minimum surface area:
[tex]\[ S\left(\frac{5^{2/3}}{\pi^{1/3}}\right) = 2 \cdot 5^{4/3} \pi^{1/3} + 20 \cdot 5^{1/3} \pi^{1/3} = 30 \cdot 5^{1/3} \pi^{1/3} \][/tex]
Thus, the radius that minimizes the surface area is [tex]\( r = \frac{5^{2/3}}{\pi^{1/3}} \)[/tex] and the minimum surface area is [tex]\( 30 \cdot 5^{1/3} \pi^{1/3} \)[/tex] cm[tex]\(^2\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.