Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
First, we will convert the given angles of elevation and depression into terms that we can use in trigonometric formulas. Note the following:
- The height of the window above the ground, [tex]\( h = 15 \)[/tex] meters.
- The angle of elevation of the top of the opposite house, [tex]\( \theta_1 = 30^\circ \)[/tex].
- The angle of depression of the foot of the opposite house, [tex]\( \theta_2 = 45^\circ \)[/tex].
### Step 1: Determine the horizontal distance between the two houses
Using the angle of depression ([tex]\(45^\circ\)[/tex]) and the height of the window ([tex]\(h\)[/tex]), we can find the horizontal distance ([tex]\(d\)[/tex]) between the two houses. The formula we use is based on the tangent of the angle of depression:
[tex]\[ \tan(45^\circ) = \frac{h}{d} \][/tex]
Since [tex]\(\tan(45^\circ) = 1\)[/tex], we have:
[tex]\[ 1 = \frac{15}{d} \][/tex]
Solving for [tex]\(d\)[/tex]:
[tex]\[ d = 15 \text{ meters} \][/tex]
### Step 2: Determine the height of the opposite house above the window
Now, using the angle of elevation ([tex]\(30^\circ\)[/tex]), we can find the additional height ([tex]\(H\)[/tex]) of the opposite house above the level of the window. The formula we use is:
[tex]\[ \tan(30^\circ) = \frac{H}{d} \][/tex]
Since [tex]\(\tan(30^\circ) = \frac{1}{\sqrt{3}}\)[/tex], we have:
[tex]\[ \frac{1}{\sqrt{3}} = \frac{H}{15} \][/tex]
Solving for [tex]\(H\)[/tex]:
[tex]\[ H = 15 \times \frac{1}{\sqrt{3}} \][/tex]
[tex]\[ H = 15 \times \frac{\sqrt{3}}{3} \][/tex]
Given [tex]\(\sqrt{3} = 1.732\)[/tex]:
[tex]\[ H = 15 \times \frac{1.732}{3} \][/tex]
[tex]\[ H = 15 \times 0.577 = 8.66 \text{ meters} \][/tex]
### Step 3: Calculate the total height of the opposite house
Finally, we add the height of the window ([tex]\(h = 15\)[/tex] meters) to the height of the house above the window ([tex]\(H = 8.66\)[/tex] meters) to get the total height of the opposite house:
[tex]\[ \text{Total height} = h + H = 15 + 8.66 = 23.66 \text{ meters} \][/tex]
Thus, the height of the opposite house is [tex]\(23.66\)[/tex] meters.
- The height of the window above the ground, [tex]\( h = 15 \)[/tex] meters.
- The angle of elevation of the top of the opposite house, [tex]\( \theta_1 = 30^\circ \)[/tex].
- The angle of depression of the foot of the opposite house, [tex]\( \theta_2 = 45^\circ \)[/tex].
### Step 1: Determine the horizontal distance between the two houses
Using the angle of depression ([tex]\(45^\circ\)[/tex]) and the height of the window ([tex]\(h\)[/tex]), we can find the horizontal distance ([tex]\(d\)[/tex]) between the two houses. The formula we use is based on the tangent of the angle of depression:
[tex]\[ \tan(45^\circ) = \frac{h}{d} \][/tex]
Since [tex]\(\tan(45^\circ) = 1\)[/tex], we have:
[tex]\[ 1 = \frac{15}{d} \][/tex]
Solving for [tex]\(d\)[/tex]:
[tex]\[ d = 15 \text{ meters} \][/tex]
### Step 2: Determine the height of the opposite house above the window
Now, using the angle of elevation ([tex]\(30^\circ\)[/tex]), we can find the additional height ([tex]\(H\)[/tex]) of the opposite house above the level of the window. The formula we use is:
[tex]\[ \tan(30^\circ) = \frac{H}{d} \][/tex]
Since [tex]\(\tan(30^\circ) = \frac{1}{\sqrt{3}}\)[/tex], we have:
[tex]\[ \frac{1}{\sqrt{3}} = \frac{H}{15} \][/tex]
Solving for [tex]\(H\)[/tex]:
[tex]\[ H = 15 \times \frac{1}{\sqrt{3}} \][/tex]
[tex]\[ H = 15 \times \frac{\sqrt{3}}{3} \][/tex]
Given [tex]\(\sqrt{3} = 1.732\)[/tex]:
[tex]\[ H = 15 \times \frac{1.732}{3} \][/tex]
[tex]\[ H = 15 \times 0.577 = 8.66 \text{ meters} \][/tex]
### Step 3: Calculate the total height of the opposite house
Finally, we add the height of the window ([tex]\(h = 15\)[/tex] meters) to the height of the house above the window ([tex]\(H = 8.66\)[/tex] meters) to get the total height of the opposite house:
[tex]\[ \text{Total height} = h + H = 15 + 8.66 = 23.66 \text{ meters} \][/tex]
Thus, the height of the opposite house is [tex]\(23.66\)[/tex] meters.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.