At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
### Step-by-Step Solution
#### (a) Hypothesis Testing
We are given the ages of actresses and actors when they won awards and need to test if there is a significant difference in their ages, particularly if actresses are generally younger than actors. Here we'll conduct a hypothesis test with a significance level of 0.05.
1. State the Hypotheses:
- Null Hypothesis ([tex]\( H_0 \)[/tex]): The mean difference in ages ([tex]\( \mu_d \)[/tex]) between actresses and actors is greater than or equal to 0. This implies actresses are not significantly younger than actors.
[tex]\[ H_0: \mu_d \geq 0 \][/tex]
- Alternative Hypothesis ([tex]\( H_1 \)[/tex]): The mean difference in ages ([tex]\( \mu_d \)[/tex]) is less than 0. This implies actresses are significantly younger than actors.
[tex]\[ H_1: \mu_d < 0 \][/tex]
- Here, [tex]\( \mu_d \)[/tex] represents the mean difference where each difference [tex]\( d \)[/tex] is calculated by [tex]\( \text{actress's age} - \text{actor's age} \)[/tex].
2. Sample Data:
The ages of actresses and actors are given as follows:
- Ages of Actresses: [tex]\( [30, 30, 30, 29, 35, 27, 26, 40, 30, 33] \)[/tex]
- Ages of Actors: [tex]\( [64, 40, 36, 36, 29, 35, 52, 37, 34, 38] \)[/tex]
3. Calculate the Differences:
Differences [tex]\( d \)[/tex] are calculated for matched pairs:
[tex]\[ [30-64, 30-40, 30-36, 29-36, 35-29, 27-35, 26-52, 40-37, 30-34, 33-38] \][/tex]
4. Sample Mean of Differences and Test Statistics:
From the result provided, the numerical values are:
- Mean of Differences ([tex]\( \bar{d} \)[/tex]): [tex]\( -9.1 \)[/tex]
- Test Statistic ([tex]\( t \)[/tex]-statistic): [tex]\( -2.359 \)[/tex]
- P-value: [tex]\( 0.0213 \)[/tex]
5. Comparison with Critical Value:
Since we are conducting a one-sample t-test with a one-tailed hypothesis (left-tailed), we compare the p-value to our significance level ([tex]\( \alpha = 0.05 \)[/tex]).
6. Make Decision:
- If the p-value < 0.05, we reject the null hypothesis.
- Here, [tex]\( 0.0213 < 0.05 \)[/tex], so we reject the null hypothesis.
7. Conclusion:
At a 0.05 significance level, there is sufficient evidence to support the claim that Best Actresses are generally younger than Best Actors.
### Answers for the Hypotheses
[tex]\[ \begin{array}{l} H_0: \mu_d \geq 0 \\ H_1: \mu_d < 0 \end{array} \][/tex]
#### (a) Hypothesis Testing
We are given the ages of actresses and actors when they won awards and need to test if there is a significant difference in their ages, particularly if actresses are generally younger than actors. Here we'll conduct a hypothesis test with a significance level of 0.05.
1. State the Hypotheses:
- Null Hypothesis ([tex]\( H_0 \)[/tex]): The mean difference in ages ([tex]\( \mu_d \)[/tex]) between actresses and actors is greater than or equal to 0. This implies actresses are not significantly younger than actors.
[tex]\[ H_0: \mu_d \geq 0 \][/tex]
- Alternative Hypothesis ([tex]\( H_1 \)[/tex]): The mean difference in ages ([tex]\( \mu_d \)[/tex]) is less than 0. This implies actresses are significantly younger than actors.
[tex]\[ H_1: \mu_d < 0 \][/tex]
- Here, [tex]\( \mu_d \)[/tex] represents the mean difference where each difference [tex]\( d \)[/tex] is calculated by [tex]\( \text{actress's age} - \text{actor's age} \)[/tex].
2. Sample Data:
The ages of actresses and actors are given as follows:
- Ages of Actresses: [tex]\( [30, 30, 30, 29, 35, 27, 26, 40, 30, 33] \)[/tex]
- Ages of Actors: [tex]\( [64, 40, 36, 36, 29, 35, 52, 37, 34, 38] \)[/tex]
3. Calculate the Differences:
Differences [tex]\( d \)[/tex] are calculated for matched pairs:
[tex]\[ [30-64, 30-40, 30-36, 29-36, 35-29, 27-35, 26-52, 40-37, 30-34, 33-38] \][/tex]
4. Sample Mean of Differences and Test Statistics:
From the result provided, the numerical values are:
- Mean of Differences ([tex]\( \bar{d} \)[/tex]): [tex]\( -9.1 \)[/tex]
- Test Statistic ([tex]\( t \)[/tex]-statistic): [tex]\( -2.359 \)[/tex]
- P-value: [tex]\( 0.0213 \)[/tex]
5. Comparison with Critical Value:
Since we are conducting a one-sample t-test with a one-tailed hypothesis (left-tailed), we compare the p-value to our significance level ([tex]\( \alpha = 0.05 \)[/tex]).
6. Make Decision:
- If the p-value < 0.05, we reject the null hypothesis.
- Here, [tex]\( 0.0213 < 0.05 \)[/tex], so we reject the null hypothesis.
7. Conclusion:
At a 0.05 significance level, there is sufficient evidence to support the claim that Best Actresses are generally younger than Best Actors.
### Answers for the Hypotheses
[tex]\[ \begin{array}{l} H_0: \mu_d \geq 0 \\ H_1: \mu_d < 0 \end{array} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.