Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this question about the z-score for a credit score of 694 given that the mean ([tex]$\mu$[/tex]) is 690 and the standard deviation ([tex]$\sigma$[/tex]) is 14, follow these steps:
1. Calculate the z-score:
The z-score formula is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
Where [tex]\( X \)[/tex] is the value you're analyzing.
2. Substitute the given values:
[tex]\[ z_{694} = \frac{694 - 690}{14} \][/tex]
3. Perform the calculation:
[tex]\[ z_{694} = \frac{4}{14} \approx 0.2857142857142857 \][/tex]
4. Interpret the z-score:
- Within 1 Standard Deviation: This means [tex]\( -1 \leq z \leq 1 \)[/tex].
- Between 1 and 2 Standard Deviations: This means [tex]\( 1 < |z| \leq 2 \)[/tex].
- Between 2 and 3 Standard Deviations: This means [tex]\( 2 < |z| \leq 3 \)[/tex].
- More than 3 Standard Deviations: This means [tex]\( |z| > 3 \)[/tex].
Given our computed z-score of approximately 0.286:
- The z-score of 0.286 is within the range [tex]\(-1 \leq z \leq 1\)[/tex]. Therefore, it is within 1 standard deviation of the mean.
- It does not fall in the range [tex]\( 1 < |z| \leq 2 \)[/tex], so it is not between 1 and 2 standard deviations of the mean.
- It does not fall in the range [tex]\( 2 < |z| \leq 3 \)[/tex], so it is not between 2 and 3 standard deviations of the mean.
- It does not fall in the range [tex]\( |z| > 3 \)[/tex], so it is not more than 3 standard deviations of the mean.
Hence, the statement that must be true about [tex]\( z_{694} \)[/tex] is:
[tex]\[ z_{694} \text{ is within 1 standard deviation of the mean} \][/tex]
1. Calculate the z-score:
The z-score formula is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
Where [tex]\( X \)[/tex] is the value you're analyzing.
2. Substitute the given values:
[tex]\[ z_{694} = \frac{694 - 690}{14} \][/tex]
3. Perform the calculation:
[tex]\[ z_{694} = \frac{4}{14} \approx 0.2857142857142857 \][/tex]
4. Interpret the z-score:
- Within 1 Standard Deviation: This means [tex]\( -1 \leq z \leq 1 \)[/tex].
- Between 1 and 2 Standard Deviations: This means [tex]\( 1 < |z| \leq 2 \)[/tex].
- Between 2 and 3 Standard Deviations: This means [tex]\( 2 < |z| \leq 3 \)[/tex].
- More than 3 Standard Deviations: This means [tex]\( |z| > 3 \)[/tex].
Given our computed z-score of approximately 0.286:
- The z-score of 0.286 is within the range [tex]\(-1 \leq z \leq 1\)[/tex]. Therefore, it is within 1 standard deviation of the mean.
- It does not fall in the range [tex]\( 1 < |z| \leq 2 \)[/tex], so it is not between 1 and 2 standard deviations of the mean.
- It does not fall in the range [tex]\( 2 < |z| \leq 3 \)[/tex], so it is not between 2 and 3 standard deviations of the mean.
- It does not fall in the range [tex]\( |z| > 3 \)[/tex], so it is not more than 3 standard deviations of the mean.
Hence, the statement that must be true about [tex]\( z_{694} \)[/tex] is:
[tex]\[ z_{694} \text{ is within 1 standard deviation of the mean} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.