Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which circles lie completely within the fourth quadrant, we need to examine the center and radius of each circle. The fourth quadrant is defined as the region where both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] coordinates are positive.
Let's analyze each circle:
### Circle A: [tex]\((x-5)^2 + (y+5)^2 = 9\)[/tex]
- Center: [tex]\((5, -5)\)[/tex]
- Radius: The radius can be computed as the square root of 9, which is 3.
For the circle to lie completely within the fourth quadrant:
- The center must be in the fourth quadrant, implying [tex]\(y\)[/tex] must be negative.
- [tex]\(x - \text{radius}\)[/tex] and [tex]\(y - \text{radius}\)[/tex] must both remain positive.
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(5\)[/tex], which is positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-5\)[/tex], which is negative. Hence, the circle is not in the fourth quadrant.
### Circle B: [tex]\((x-2)^2 + (y+7)^2 = 64\)[/tex]
- Center: [tex]\((2, -7)\)[/tex]
- Radius: The radius is the square root of 64, which is 8.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(2\)[/tex], radius: [tex]\(8\)[/tex]. [tex]\(2 - 8 = -6\)[/tex], negative
- [tex]\(y\)[/tex] coordinate: [tex]\(-7\)[/tex], which is negative. The center is not in the fourth quadrant.
### Circle C: [tex]\((x-12)^2 + (y+0)^2 = 72\)[/tex]
- Center: [tex]\((12, 0)\)[/tex]
- Radius: The radius is the square root of 72, which is approximately 8.49.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(12\)[/tex], radius: [tex]\(8.49\)[/tex]. [tex]\(12 - 8.49 > 0\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(0\)[/tex], radius [tex]\(8.49\)[/tex]. [tex]\(0 - 8.49 = -8.49\)[/tex], negative
The center is not in the fourth quadrant.
### Circle D: [tex]\((x-9)^2 + (y+9)^2 = 16\)[/tex]
- Center: [tex]\((9, -9)\)[/tex]
- Radius: The radius is the square root of 16, which is 4.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(9 - 4 = 5\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(-9 - 4 = -13\)[/tex], negative.
The center is not in the fourth quadrant.
### Conclusion
None of the given circles lie completely within the fourth quadrant.
Thus, the answer is:
[tex]\[ \boxed{[]} \][/tex]
Let's analyze each circle:
### Circle A: [tex]\((x-5)^2 + (y+5)^2 = 9\)[/tex]
- Center: [tex]\((5, -5)\)[/tex]
- Radius: The radius can be computed as the square root of 9, which is 3.
For the circle to lie completely within the fourth quadrant:
- The center must be in the fourth quadrant, implying [tex]\(y\)[/tex] must be negative.
- [tex]\(x - \text{radius}\)[/tex] and [tex]\(y - \text{radius}\)[/tex] must both remain positive.
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(5\)[/tex], which is positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-5\)[/tex], which is negative. Hence, the circle is not in the fourth quadrant.
### Circle B: [tex]\((x-2)^2 + (y+7)^2 = 64\)[/tex]
- Center: [tex]\((2, -7)\)[/tex]
- Radius: The radius is the square root of 64, which is 8.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(2\)[/tex], radius: [tex]\(8\)[/tex]. [tex]\(2 - 8 = -6\)[/tex], negative
- [tex]\(y\)[/tex] coordinate: [tex]\(-7\)[/tex], which is negative. The center is not in the fourth quadrant.
### Circle C: [tex]\((x-12)^2 + (y+0)^2 = 72\)[/tex]
- Center: [tex]\((12, 0)\)[/tex]
- Radius: The radius is the square root of 72, which is approximately 8.49.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(12\)[/tex], radius: [tex]\(8.49\)[/tex]. [tex]\(12 - 8.49 > 0\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(0\)[/tex], radius [tex]\(8.49\)[/tex]. [tex]\(0 - 8.49 = -8.49\)[/tex], negative
The center is not in the fourth quadrant.
### Circle D: [tex]\((x-9)^2 + (y+9)^2 = 16\)[/tex]
- Center: [tex]\((9, -9)\)[/tex]
- Radius: The radius is the square root of 16, which is 4.
For the circle to lie completely within the fourth quadrant:
- [tex]\(x - \text{radius} > 0\)[/tex]
- [tex]\(y - \text{radius} > 0\)[/tex]
Here:
- [tex]\(x\)[/tex] coordinate: [tex]\(9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(9 - 4 = 5\)[/tex], positive.
- [tex]\(y\)[/tex] coordinate: [tex]\(-9\)[/tex], radius: [tex]\(4\)[/tex]. [tex]\(-9 - 4 = -13\)[/tex], negative.
The center is not in the fourth quadrant.
### Conclusion
None of the given circles lie completely within the fourth quadrant.
Thus, the answer is:
[tex]\[ \boxed{[]} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.