Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
### Solution
#### a. Average Volume of Titration
First, we need to tabulate the titration table and calculate the average volume of the titrations.
Given:
- First titration volume: [tex]\(20.60 \, \text{cm}^3\)[/tex]
- Second titration volume: [tex]\(20.50 \, \text{cm}^3\)[/tex]
To find the average volume:
[tex]\[ \text{Average volume} = \frac{{20.60 \, \text{cm}^3 + 20.50 \, \text{cm}^3}}{2} = 20.55 \, \text{cm}^3 \][/tex]
#### b.i. Concentration of Solution B in [tex]\(\text{mol}/\text{dm}^3\)[/tex]
Given that solution B contains [tex]\(24 \, \text{g}\)[/tex] of NaOH per [tex]\(\text{dm}^3\)[/tex], we need to convert this to [tex]\(\text{mol}/\text{dm}^3\)[/tex].
Molar mass of NaOH:
[tex]\[ \text{Na} = 23 \quad \text{O} = 16 \quad \text{H} = 1 \][/tex]
[tex]\[ \text{Molar mass of NaOH} = 23 + 16 + 1 = 40 \, \text{g/mol} \][/tex]
Concentration in [tex]\(\text{mol}/\text{dm}^3\)[/tex]:
[tex]\[ \text{Concentration of NaOH} = \frac{24 \, \text{g/dm}^3}{40 \, \text{g/mol}} = 0.6 \, \text{mol/dm}^3 \][/tex]
#### b.ii. Concentration of Pure Acid in Solution A in [tex]\(\text{g/dm}^3\)[/tex]
Moles of NaOH used:
Given that [tex]\(25 \, \text{cm}^3\)[/tex] (or [tex]\(0.025 \, \text{dm}^3\)[/tex]) of NaOH solution was used:
[tex]\[ \text{Moles of NaOH} = \text{Concentration} \times \text{Volume} = 0.6 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.015 \, \text{mol} \][/tex]
From the balanced chemical equation:
[tex]\[ 2 \, \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} \][/tex]
1 mole of [tex]\(\text{H}_2\text{SO}_4\)[/tex] reacts with 2 moles of [tex]\(\text{NaOH}\)[/tex], thus:
[tex]\[ \text{Moles of} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles of NaOH}}{2} = \frac{0.015}{2} = 0.0075 \, \text{mol} \][/tex]
Volume of [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution used:
[tex]\[ 20.55 \, \text{cm}^3 = 0.02055 \, \text{dm}^3 \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in solution A:
Using the moles we just calculated:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles}}{\text{Volume}} = \frac{0.0075 \, \text{mol}}{0.02055 \, \text{dm}^3} = 0.365 \, \text{mol/dm}^3 \][/tex]
Then convert this into [tex]\(\text{g/dm}^3\)[/tex].
Molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
[tex]\[ \text{H} = 1, \text{S} = 32, \text{O} = 16 \quad \Rightarrow \quad \text{Molar mass of} \, \text{H}_2\text{SO}_4 = 2 \times 1 + 32 + 4 \times 16 = 98 \, \text{g/mol} \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in g/dm}^3:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = 0.365 \, \text{mol/dm}^3 \times 98 \, \text{g/mol} = 35.77 \, \text{g/dm}^3 \][/tex]
#### b.iii. Percentage Purity of Acid in Solution A
Given that solution A initially contains [tex]\(37.60 \, \text{g/dm}^3\)[/tex] of impure [tex]\(\text{H}_2\text{SO}_4\)[/tex], the percentage purity is calculated as:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Concentration of pure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}}{\text{Concentration of impure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}} \right) \times 100 = \left( \frac{35.77}{37.60} \right) \times 100 = 95.12\% \][/tex]
### Summary of Results
1. Average volume of acid used: [tex]\(20.55 \, \text{cm}^3\)[/tex]
2. Concentration of solution B: [tex]\(0.6 \, \text{mol/dm}^3\)[/tex]
3. Concentration of pure acid in solution A: [tex]\(35.77 \, \text{g/dm}^3\)[/tex]
4. Percentage purity of acid in solution A: [tex]\(95.12\%\)[/tex]
#### a. Average Volume of Titration
First, we need to tabulate the titration table and calculate the average volume of the titrations.
Given:
- First titration volume: [tex]\(20.60 \, \text{cm}^3\)[/tex]
- Second titration volume: [tex]\(20.50 \, \text{cm}^3\)[/tex]
To find the average volume:
[tex]\[ \text{Average volume} = \frac{{20.60 \, \text{cm}^3 + 20.50 \, \text{cm}^3}}{2} = 20.55 \, \text{cm}^3 \][/tex]
#### b.i. Concentration of Solution B in [tex]\(\text{mol}/\text{dm}^3\)[/tex]
Given that solution B contains [tex]\(24 \, \text{g}\)[/tex] of NaOH per [tex]\(\text{dm}^3\)[/tex], we need to convert this to [tex]\(\text{mol}/\text{dm}^3\)[/tex].
Molar mass of NaOH:
[tex]\[ \text{Na} = 23 \quad \text{O} = 16 \quad \text{H} = 1 \][/tex]
[tex]\[ \text{Molar mass of NaOH} = 23 + 16 + 1 = 40 \, \text{g/mol} \][/tex]
Concentration in [tex]\(\text{mol}/\text{dm}^3\)[/tex]:
[tex]\[ \text{Concentration of NaOH} = \frac{24 \, \text{g/dm}^3}{40 \, \text{g/mol}} = 0.6 \, \text{mol/dm}^3 \][/tex]
#### b.ii. Concentration of Pure Acid in Solution A in [tex]\(\text{g/dm}^3\)[/tex]
Moles of NaOH used:
Given that [tex]\(25 \, \text{cm}^3\)[/tex] (or [tex]\(0.025 \, \text{dm}^3\)[/tex]) of NaOH solution was used:
[tex]\[ \text{Moles of NaOH} = \text{Concentration} \times \text{Volume} = 0.6 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.015 \, \text{mol} \][/tex]
From the balanced chemical equation:
[tex]\[ 2 \, \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} \][/tex]
1 mole of [tex]\(\text{H}_2\text{SO}_4\)[/tex] reacts with 2 moles of [tex]\(\text{NaOH}\)[/tex], thus:
[tex]\[ \text{Moles of} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles of NaOH}}{2} = \frac{0.015}{2} = 0.0075 \, \text{mol} \][/tex]
Volume of [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution used:
[tex]\[ 20.55 \, \text{cm}^3 = 0.02055 \, \text{dm}^3 \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in solution A:
Using the moles we just calculated:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = \frac{\text{Moles}}{\text{Volume}} = \frac{0.0075 \, \text{mol}}{0.02055 \, \text{dm}^3} = 0.365 \, \text{mol/dm}^3 \][/tex]
Then convert this into [tex]\(\text{g/dm}^3\)[/tex].
Molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
[tex]\[ \text{H} = 1, \text{S} = 32, \text{O} = 16 \quad \Rightarrow \quad \text{Molar mass of} \, \text{H}_2\text{SO}_4 = 2 \times 1 + 32 + 4 \times 16 = 98 \, \text{g/mol} \][/tex]
Concentration of pure [tex]\(\text{H}_2\text{SO}_4\)[/tex] in g/dm}^3:
[tex]\[ \text{Concentration of pure} \, \text{H}_2\text{SO}_4 = 0.365 \, \text{mol/dm}^3 \times 98 \, \text{g/mol} = 35.77 \, \text{g/dm}^3 \][/tex]
#### b.iii. Percentage Purity of Acid in Solution A
Given that solution A initially contains [tex]\(37.60 \, \text{g/dm}^3\)[/tex] of impure [tex]\(\text{H}_2\text{SO}_4\)[/tex], the percentage purity is calculated as:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Concentration of pure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}}{\text{Concentration of impure \(\text{H}_2\text{SO}_4\) in \(\text{g/dm}^3\)}} \right) \times 100 = \left( \frac{35.77}{37.60} \right) \times 100 = 95.12\% \][/tex]
### Summary of Results
1. Average volume of acid used: [tex]\(20.55 \, \text{cm}^3\)[/tex]
2. Concentration of solution B: [tex]\(0.6 \, \text{mol/dm}^3\)[/tex]
3. Concentration of pure acid in solution A: [tex]\(35.77 \, \text{g/dm}^3\)[/tex]
4. Percentage purity of acid in solution A: [tex]\(95.12\%\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.