At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, let's first set up an equation based on the given information.
We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.
This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]
Let's solve for [tex]\( x \)[/tex]:
1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]
Next, we need to find the corresponding lengths:
For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]
For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]
Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]
Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards
We know:
- The length [tex]\( L \)[/tex] of the rectangle is [tex]\( 5 \)[/tex] yards more than twice the width [tex]\( x \)[/tex].
- The area [tex]\( A \)[/tex] of the rectangle is [tex]\( 348 \)[/tex] square yards.
This gives us the following relationships:
1. [tex]\( L = 2x + 5 \)[/tex]
2. [tex]\( A = L \cdot x \)[/tex]
3. Plugging in the given area, we get [tex]\( 348 = (2x + 5) \cdot x \)[/tex]
Let's solve for [tex]\( x \)[/tex]:
1. Start with the equation [tex]\( 348 = (2x + 5) \cdot x \)[/tex].
2. Distribute [tex]\( x \)[/tex] on the right-hand side: [tex]\( 348 = 2x^2 + 5x \)[/tex].
3. Rewrite the equation in standard quadratic form: [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
Next, we solve the quadratic equation [tex]\( 2x^2 + 5x - 348 = 0 \)[/tex].
The solutions to this quadratic equation are:
[tex]\[ x_1 = -\frac{29}{2} \][/tex]
[tex]\[ x_2 = 12 \][/tex]
Next, we need to find the corresponding lengths:
For [tex]\( x = -\frac{29}{2} \)[/tex]:
[tex]\[ L = 2x + 5 = 2\left(-\frac{29}{2}\right) + 5 = -29 + 5 = -24 \][/tex]
For [tex]\( x = 12 \)[/tex]:
[tex]\[ L = 2x + 5 = 2 \cdot 12 + 5 = 24 + 5 = 29 \][/tex]
Thus, the width and corresponding length for the rectangle based on the solutions are:
- Width [tex]\( x = -\frac{29}{2} \)[/tex] and length [tex]\( L = -24 \)[/tex]
- Width [tex]\( x = 12 \)[/tex] and length [tex]\( L = 29 \)[/tex]
Only the positive dimensions make physical sense in the context of this problem. Therefore, the valid solution is:
- Width [tex]\( 12 \)[/tex] yards
- Length [tex]\( 29 \)[/tex] yards
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.