At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the equation step-by-step.
We are given the equation:
[tex]\[ w(w-2)(6w + 5) = 0 \][/tex]
To find the solutions, we need to determine the values of [tex]\( w \)[/tex] that make the equation equal to zero. This is a factored polynomial equation, and we can use the Zero Product Property, which states that if a product of factors is zero, then at least one of the factors must be zero.
Let's consider each factor individually:
1. First factor: [tex]\( w \)[/tex]
We set the first factor equal to zero:
[tex]\[ w = 0 \][/tex]
Therefore, one solution is:
[tex]\[ w = 0 \][/tex]
2. Second factor: [tex]\( w - 2 \)[/tex]
We set the second factor equal to zero:
[tex]\[ w - 2 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we get:
[tex]\[ w = 2 \][/tex]
Therefore, another solution is:
[tex]\[ w = 2 \][/tex]
3. Third factor: [tex]\( 6w + 5 \)[/tex]
We set the third factor equal to zero:
[tex]\[ 6w + 5 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we subtract 5 from both sides:
[tex]\[ 6w = -5 \][/tex]
Then, we divide both sides by 6:
[tex]\[ w = -\frac{5}{6} \][/tex]
Therefore, the third solution is:
[tex]\[ w = -\frac{5}{6} \][/tex]
Putting it all together, the solutions to the equation [tex]\( w(w-2)(6w+5) = 0 \)[/tex] are:
[tex]\[ w = 0, \quad w = 2, \quad \text{and} \quad w = -\frac{5}{6} \][/tex]
Hence, the complete set of solutions is:
[tex]\[ \boxed{[-\frac{5}{6}, 0, 2]} \][/tex]
We are given the equation:
[tex]\[ w(w-2)(6w + 5) = 0 \][/tex]
To find the solutions, we need to determine the values of [tex]\( w \)[/tex] that make the equation equal to zero. This is a factored polynomial equation, and we can use the Zero Product Property, which states that if a product of factors is zero, then at least one of the factors must be zero.
Let's consider each factor individually:
1. First factor: [tex]\( w \)[/tex]
We set the first factor equal to zero:
[tex]\[ w = 0 \][/tex]
Therefore, one solution is:
[tex]\[ w = 0 \][/tex]
2. Second factor: [tex]\( w - 2 \)[/tex]
We set the second factor equal to zero:
[tex]\[ w - 2 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we get:
[tex]\[ w = 2 \][/tex]
Therefore, another solution is:
[tex]\[ w = 2 \][/tex]
3. Third factor: [tex]\( 6w + 5 \)[/tex]
We set the third factor equal to zero:
[tex]\[ 6w + 5 = 0 \][/tex]
Solving for [tex]\( w \)[/tex], we subtract 5 from both sides:
[tex]\[ 6w = -5 \][/tex]
Then, we divide both sides by 6:
[tex]\[ w = -\frac{5}{6} \][/tex]
Therefore, the third solution is:
[tex]\[ w = -\frac{5}{6} \][/tex]
Putting it all together, the solutions to the equation [tex]\( w(w-2)(6w+5) = 0 \)[/tex] are:
[tex]\[ w = 0, \quad w = 2, \quad \text{and} \quad w = -\frac{5}{6} \][/tex]
Hence, the complete set of solutions is:
[tex]\[ \boxed{[-\frac{5}{6}, 0, 2]} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.