Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find [tex]\(\lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A}\)[/tex] for the function [tex]\(f(x) = x^2 + 2 \ln x\)[/tex], we can use the concept of the derivative. The expression given is the definition of the derivative of the function [tex]\(f(x)\)[/tex] at the point [tex]\(x=2\)[/tex].
To solve this step-by-step:
1. Identify the function [tex]\(f(x)\)[/tex] and the point of evaluation:
[tex]\[ f(x) = x^2 + 2 \ln x \][/tex]
The point of evaluation is [tex]\(x = 2\)[/tex].
2. Calculate the derivative of [tex]\(f(x)\)[/tex]:
The derivative [tex]\(f'(x)\)[/tex] of [tex]\(f(x)\)[/tex] is obtained by differentiating each term of [tex]\(f(x)\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (x^2) + \frac{d}{dx} (2 \ln x) \][/tex]
[tex]\[ f'(x) = 2x + \frac{2}{x} \][/tex]
3. Evaluate the derivative at [tex]\(x = 2\)[/tex]:
[tex]\[ f'(2) = 2(2) + \frac{2}{2} \][/tex]
[tex]\[ f'(2) = 4 + 1 \][/tex]
[tex]\[ f'(2) = 5 \][/tex]
4. Interpret the limit:
Using the definition of the derivative, we have:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = f'(2) \][/tex]
5. Conclusion:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = 5 \][/tex]
The correct answer is:
A. 5
To solve this step-by-step:
1. Identify the function [tex]\(f(x)\)[/tex] and the point of evaluation:
[tex]\[ f(x) = x^2 + 2 \ln x \][/tex]
The point of evaluation is [tex]\(x = 2\)[/tex].
2. Calculate the derivative of [tex]\(f(x)\)[/tex]:
The derivative [tex]\(f'(x)\)[/tex] of [tex]\(f(x)\)[/tex] is obtained by differentiating each term of [tex]\(f(x)\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (x^2) + \frac{d}{dx} (2 \ln x) \][/tex]
[tex]\[ f'(x) = 2x + \frac{2}{x} \][/tex]
3. Evaluate the derivative at [tex]\(x = 2\)[/tex]:
[tex]\[ f'(2) = 2(2) + \frac{2}{2} \][/tex]
[tex]\[ f'(2) = 4 + 1 \][/tex]
[tex]\[ f'(2) = 5 \][/tex]
4. Interpret the limit:
Using the definition of the derivative, we have:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = f'(2) \][/tex]
5. Conclusion:
[tex]\[ \lim_{A \rightarrow 0} \frac{f(2 + A) - f(2)}{A} = 5 \][/tex]
The correct answer is:
A. 5
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.