Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's solve this step-by-step.
1. Understanding the Problem:
- The sum of the diagonals of the rectangle is given as 26 cm.
- One of the sides of the rectangle is given as 5 cm.
- We need to find the sum of the lengths of the other three sides of the rectangle.
2. Find the Length of one diagonal:
Since the sum of the diagonals is 26 cm and the diagonals of a rectangle are equal in length, each diagonal would be:
[tex]\[ \text{Length of one diagonal} = \frac{26}{2} = 13 \text{ cm} \][/tex]
3. Using the Pythagorean theorem:
The diagonals of a rectangle divide it into two right-angled triangles. Using the Pythagorean theorem in one of these triangles, we can find the length of the other side. Let's denote the unknown side as [tex]\( b \)[/tex].
The relationship is given by:
[tex]\[ \text{Diagonal}^2 = \text{side}_a^2 + \text{side}_b^2 \][/tex]
Substituting the known values:
[tex]\[ 13^2 = 5^2 + b^2 \][/tex]
[tex]\[ 169 = 25 + b^2 \][/tex]
Now, solving for [tex]\( b \)[/tex]:
[tex]\[ b^2 = 169 - 25 = 144 \][/tex]
[tex]\[ b = \sqrt{144} = 12 \text{ cm} \][/tex]
4. Calculate the sum of the lengths of the other three sides:
- Sum of the other three sides of the rectangle includes:
- The given side [tex]\( a = 5 \text{ cm} \)[/tex]
- The unknown side [tex]\( b = 12 \text{ cm} \)[/tex]
- Another instance of side [tex]\( a = 5 \text{ cm} \)[/tex] and side [tex]\( b = 12 \text{ cm} \)[/tex]
So, the sum is:
[tex]\[ \text{Sum} = \text{side}_a + \text{side}_b + \text{side}_b = 5 + 5 + 12 + 12 = 34 \text{ cm} \][/tex]
Therefore, the sum of the lengths of the other three sides of the rectangle is 34 cm.
1. Understanding the Problem:
- The sum of the diagonals of the rectangle is given as 26 cm.
- One of the sides of the rectangle is given as 5 cm.
- We need to find the sum of the lengths of the other three sides of the rectangle.
2. Find the Length of one diagonal:
Since the sum of the diagonals is 26 cm and the diagonals of a rectangle are equal in length, each diagonal would be:
[tex]\[ \text{Length of one diagonal} = \frac{26}{2} = 13 \text{ cm} \][/tex]
3. Using the Pythagorean theorem:
The diagonals of a rectangle divide it into two right-angled triangles. Using the Pythagorean theorem in one of these triangles, we can find the length of the other side. Let's denote the unknown side as [tex]\( b \)[/tex].
The relationship is given by:
[tex]\[ \text{Diagonal}^2 = \text{side}_a^2 + \text{side}_b^2 \][/tex]
Substituting the known values:
[tex]\[ 13^2 = 5^2 + b^2 \][/tex]
[tex]\[ 169 = 25 + b^2 \][/tex]
Now, solving for [tex]\( b \)[/tex]:
[tex]\[ b^2 = 169 - 25 = 144 \][/tex]
[tex]\[ b = \sqrt{144} = 12 \text{ cm} \][/tex]
4. Calculate the sum of the lengths of the other three sides:
- Sum of the other three sides of the rectangle includes:
- The given side [tex]\( a = 5 \text{ cm} \)[/tex]
- The unknown side [tex]\( b = 12 \text{ cm} \)[/tex]
- Another instance of side [tex]\( a = 5 \text{ cm} \)[/tex] and side [tex]\( b = 12 \text{ cm} \)[/tex]
So, the sum is:
[tex]\[ \text{Sum} = \text{side}_a + \text{side}_b + \text{side}_b = 5 + 5 + 12 + 12 = 34 \text{ cm} \][/tex]
Therefore, the sum of the lengths of the other three sides of the rectangle is 34 cm.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.