Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the probability that the product of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is more than 20, where [tex]\( x \)[/tex] is chosen from the set \{1, 2, 3, 4\} and [tex]\( y \)[/tex] is chosen from the set \{5, 6, 7, 8\}, we can follow these steps:
### Step 1: Determine the Total Number of Possible Outcomes
Each choice of [tex]\( x \)[/tex] can be paired with each choice of [tex]\( y \)[/tex]. Since there are 4 choices for [tex]\( x \)[/tex] and 4 choices for [tex]\( y \)[/tex], the total number of possible outcomes is:
[tex]\[ 4 \times 4 = 16 \][/tex]
### Step 2: Identify the Favorable Outcomes
We need to count the number of combinations where the product [tex]\( xy \)[/tex] is greater than 20. We will evaluate this condition for each possible pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- For [tex]\( x = 1 \)[/tex]:
- [tex]\( 1 \times 5 = 5 \)[/tex] (not greater than 20)
- [tex]\( 1 \times 6 = 6 \)[/tex] (not greater than 20)
- [tex]\( 1 \times 7 = 7 \)[/tex] (not greater than 20)
- [tex]\( 1 \times 8 = 8 \)[/tex] (not greater than 20)
- For [tex]\( x = 2 \)[/tex]:
- [tex]\( 2 \times 5 = 10 \)[/tex] (not greater than 20)
- [tex]\( 2 \times 6 = 12 \)[/tex] (not greater than 20)
- [tex]\( 2 \times 7 = 14 \)[/tex] (not greater than 20)
- [tex]\( 2 \times 8 = 16 \)[/tex] (not greater than 20)
- For [tex]\( x = 3 \)[/tex]:
- [tex]\( 3 \times 5 = 15 \)[/tex] (not greater than 20)
- [tex]\( 3 \times 6 = 18 \)[/tex] (not greater than 20)
- [tex]\( 3 \times 7 = 21 \)[/tex] (greater than 20)
- [tex]\( 3 \times 8 = 24 \)[/tex] (greater than 20)
- For [tex]\( x = 4 \)[/tex]:
- [tex]\( 4 \times 5 = 20 \)[/tex] (not greater than 20)
- [tex]\( 4 \times 6 = 24 \)[/tex] (greater than 20)
- [tex]\( 4 \times 7 = 28 \)[/tex] (greater than 20)
- [tex]\( 4 \times 8 = 32 \)[/tex] (greater than 20)
From these calculations, we find the favorable pairs (x, y) are:
- (3, 7)
- (3, 8)
- (4, 6)
- (4, 7)
- (4, 8)
Thus, there are 5 favorable outcomes.
### Step 3: Calculate the Probability
The probability [tex]\( P \)[/tex] of the product [tex]\( xy \)[/tex] being greater than 20 is the ratio of the number of favorable outcomes to the total number of outcomes:
[tex]\[ P(\text{xy} > 20) = \frac{\text{Number of Favorable Outcomes}}{\text{Total Number of Outcomes}} = \frac{5}{16} \][/tex]
### Step 4: Convert to a Decimal (Optional for Clarity)
[tex]\[ \frac{5}{16} = 0.3125 \][/tex]
Therefore, the probability that the product [tex]\( xy \)[/tex] is more than 20 is [tex]\( \frac{5}{16} \)[/tex] or 0.3125.
### Step 1: Determine the Total Number of Possible Outcomes
Each choice of [tex]\( x \)[/tex] can be paired with each choice of [tex]\( y \)[/tex]. Since there are 4 choices for [tex]\( x \)[/tex] and 4 choices for [tex]\( y \)[/tex], the total number of possible outcomes is:
[tex]\[ 4 \times 4 = 16 \][/tex]
### Step 2: Identify the Favorable Outcomes
We need to count the number of combinations where the product [tex]\( xy \)[/tex] is greater than 20. We will evaluate this condition for each possible pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- For [tex]\( x = 1 \)[/tex]:
- [tex]\( 1 \times 5 = 5 \)[/tex] (not greater than 20)
- [tex]\( 1 \times 6 = 6 \)[/tex] (not greater than 20)
- [tex]\( 1 \times 7 = 7 \)[/tex] (not greater than 20)
- [tex]\( 1 \times 8 = 8 \)[/tex] (not greater than 20)
- For [tex]\( x = 2 \)[/tex]:
- [tex]\( 2 \times 5 = 10 \)[/tex] (not greater than 20)
- [tex]\( 2 \times 6 = 12 \)[/tex] (not greater than 20)
- [tex]\( 2 \times 7 = 14 \)[/tex] (not greater than 20)
- [tex]\( 2 \times 8 = 16 \)[/tex] (not greater than 20)
- For [tex]\( x = 3 \)[/tex]:
- [tex]\( 3 \times 5 = 15 \)[/tex] (not greater than 20)
- [tex]\( 3 \times 6 = 18 \)[/tex] (not greater than 20)
- [tex]\( 3 \times 7 = 21 \)[/tex] (greater than 20)
- [tex]\( 3 \times 8 = 24 \)[/tex] (greater than 20)
- For [tex]\( x = 4 \)[/tex]:
- [tex]\( 4 \times 5 = 20 \)[/tex] (not greater than 20)
- [tex]\( 4 \times 6 = 24 \)[/tex] (greater than 20)
- [tex]\( 4 \times 7 = 28 \)[/tex] (greater than 20)
- [tex]\( 4 \times 8 = 32 \)[/tex] (greater than 20)
From these calculations, we find the favorable pairs (x, y) are:
- (3, 7)
- (3, 8)
- (4, 6)
- (4, 7)
- (4, 8)
Thus, there are 5 favorable outcomes.
### Step 3: Calculate the Probability
The probability [tex]\( P \)[/tex] of the product [tex]\( xy \)[/tex] being greater than 20 is the ratio of the number of favorable outcomes to the total number of outcomes:
[tex]\[ P(\text{xy} > 20) = \frac{\text{Number of Favorable Outcomes}}{\text{Total Number of Outcomes}} = \frac{5}{16} \][/tex]
### Step 4: Convert to a Decimal (Optional for Clarity)
[tex]\[ \frac{5}{16} = 0.3125 \][/tex]
Therefore, the probability that the product [tex]\( xy \)[/tex] is more than 20 is [tex]\( \frac{5}{16} \)[/tex] or 0.3125.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.