Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the number of ways a television programming director can schedule six different commercials in the six time slots allocated during a 1-hour program, we use the concept of permutations.
A permutation is an arrangement of all the members of a set into a specific sequence or order.
In this case, we have 6 different commercials (let's denote this as [tex]\( n = 6 \)[/tex]) and we need to arrange all 6 commercials in 6 time slots (so [tex]\( r = 6 \)[/tex]).
To find the number of permutations (denoted as [tex]\( nP_r \)[/tex]), we use the formula:
[tex]\[ {}_nP_r = \frac{n!}{(n-r)!} \][/tex]
Plugging in our values [tex]\( n = 6 \)[/tex] and [tex]\( r = 6 \)[/tex]:
[tex]\[ {}_6P_6 = \frac{6!}{(6-6)!} \][/tex]
Simplify the factorial terms:
[tex]\[ (6-6)! = 0! \][/tex]
Given from the hint, we know that:
[tex]\[ 0! = 1 \][/tex]
Thus:
[tex]\[ {}_6P_6 = \frac{6!}{1} \][/tex]
Now, we need to recall the value of [tex]\( 6! \)[/tex]. The factorial of 6 is calculated as:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
Therefore:
[tex]\[ \frac{6!}{1} = 720 \][/tex]
So, the number of ways the television programming director can schedule the six different commercials in six time slots is:
[tex]\[ 720 \][/tex]
Hence, the total number of possible schedules is [tex]\( 720 \)[/tex].
A permutation is an arrangement of all the members of a set into a specific sequence or order.
In this case, we have 6 different commercials (let's denote this as [tex]\( n = 6 \)[/tex]) and we need to arrange all 6 commercials in 6 time slots (so [tex]\( r = 6 \)[/tex]).
To find the number of permutations (denoted as [tex]\( nP_r \)[/tex]), we use the formula:
[tex]\[ {}_nP_r = \frac{n!}{(n-r)!} \][/tex]
Plugging in our values [tex]\( n = 6 \)[/tex] and [tex]\( r = 6 \)[/tex]:
[tex]\[ {}_6P_6 = \frac{6!}{(6-6)!} \][/tex]
Simplify the factorial terms:
[tex]\[ (6-6)! = 0! \][/tex]
Given from the hint, we know that:
[tex]\[ 0! = 1 \][/tex]
Thus:
[tex]\[ {}_6P_6 = \frac{6!}{1} \][/tex]
Now, we need to recall the value of [tex]\( 6! \)[/tex]. The factorial of 6 is calculated as:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
Therefore:
[tex]\[ \frac{6!}{1} = 720 \][/tex]
So, the number of ways the television programming director can schedule the six different commercials in six time slots is:
[tex]\[ 720 \][/tex]
Hence, the total number of possible schedules is [tex]\( 720 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.