Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the maximum height reached by the ball, we start with the given initial conditions and the equation for height as a function of time:
[tex]\[ h(t) = -16t^2 + v_0 t + h_0 \][/tex]
where [tex]\( v_0 = 110 \)[/tex] feet per second (initial velocity) and [tex]\( h_0 = 2 \)[/tex] feet (initial height).
To find the maximum height, we need to determine the time when the ball reaches its maximum height. This occurs when the velocity [tex]\( v(t) \)[/tex] is zero. The velocity function can be obtained by differentiating the height function with respect to time:
[tex]\[ v(t) = \frac{d}{dt}[-16t^2 + 110t + 2] = -32t + 110 \][/tex]
Set [tex]\( v(t) = 0 \)[/tex] to find the time [tex]\( t \)[/tex] at which the maximum height is reached:
[tex]\[ -32t + 110 = 0 \][/tex]
[tex]\[ 32t = 110 \][/tex]
[tex]\[ t = \frac{110}{32} \][/tex]
[tex]\[ t = 3.4375 \, \text{seconds} \][/tex]
Now, plug the time [tex]\( t = 3.4375 \)[/tex] back into the height equation to find the maximum height:
[tex]\[ h(3.4375) = -16(3.4375)^2 + 110(3.4375) + 2 \][/tex]
[tex]\[ h(3.4375) = -16(11.8164) + 377.125 + 2 \][/tex]
[tex]\[ h(3.4375) = -189.0625 + 377.125 + 2 \][/tex]
[tex]\[ h(3.4375) = 190.0625 \, \text{feet} \][/tex]
Rounded to the nearest hundredth, the maximum height the ball will attain is:
[tex]\[ 191.06 \, \text{feet} \][/tex]
Therefore, the maximum height the ball will attain is [tex]\( \boxed{191.06} \, \text{feet} \)[/tex].
[tex]\[ h(t) = -16t^2 + v_0 t + h_0 \][/tex]
where [tex]\( v_0 = 110 \)[/tex] feet per second (initial velocity) and [tex]\( h_0 = 2 \)[/tex] feet (initial height).
To find the maximum height, we need to determine the time when the ball reaches its maximum height. This occurs when the velocity [tex]\( v(t) \)[/tex] is zero. The velocity function can be obtained by differentiating the height function with respect to time:
[tex]\[ v(t) = \frac{d}{dt}[-16t^2 + 110t + 2] = -32t + 110 \][/tex]
Set [tex]\( v(t) = 0 \)[/tex] to find the time [tex]\( t \)[/tex] at which the maximum height is reached:
[tex]\[ -32t + 110 = 0 \][/tex]
[tex]\[ 32t = 110 \][/tex]
[tex]\[ t = \frac{110}{32} \][/tex]
[tex]\[ t = 3.4375 \, \text{seconds} \][/tex]
Now, plug the time [tex]\( t = 3.4375 \)[/tex] back into the height equation to find the maximum height:
[tex]\[ h(3.4375) = -16(3.4375)^2 + 110(3.4375) + 2 \][/tex]
[tex]\[ h(3.4375) = -16(11.8164) + 377.125 + 2 \][/tex]
[tex]\[ h(3.4375) = -189.0625 + 377.125 + 2 \][/tex]
[tex]\[ h(3.4375) = 190.0625 \, \text{feet} \][/tex]
Rounded to the nearest hundredth, the maximum height the ball will attain is:
[tex]\[ 191.06 \, \text{feet} \][/tex]
Therefore, the maximum height the ball will attain is [tex]\( \boxed{191.06} \, \text{feet} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.