Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the probability that a randomly chosen student will be a girl given that the student does not own a graphing calculator, follow these steps:
1. Identify the subset of students who do not own a graphing calculator.
- According to the table, there are a total of 13 students who do not own a graphing calculator.
2. Count the number of girls who do not own a graphing calculator.
- From the table, we can see that 6 girls do not own a graphing calculator.
3. Use the definition of conditional probability to find the probability that a student is a girl given that they do not own a graphing calculator. The formula for conditional probability is given by:
[tex]\[ P(\text{Girl} | \text{No Calculator}) = \frac{\text{Number of girls who do not own a calculator}}{\text{Total number of students who do not own a calculator}} \][/tex]
4. Substitute the values from the table into the formula:
[tex]\[ P(\text{Girl} | \text{No Calculator}) = \frac{6}{13} \][/tex]
5. Now we'll express this probability as a fraction and also convert it to a decimal form. Since [tex]\(\frac{6}{13}\)[/tex] is already in its simplest form:
- The fractional form is: [tex]\(\frac{6}{13}\)[/tex]
6. For completeness, let's write it as a decimal as well:
[tex]\[ P(\text{Girl} | \text{No Calculator}) \approx 0.46153846153846156 \][/tex]
Thus, the probability that a randomly chosen student will be a girl given that the student does not own a graphing calculator is:
[tex]\[ \boxed{\frac{6}{13}} \approx 0.4615 \][/tex] (rounded to four decimal places).
1. Identify the subset of students who do not own a graphing calculator.
- According to the table, there are a total of 13 students who do not own a graphing calculator.
2. Count the number of girls who do not own a graphing calculator.
- From the table, we can see that 6 girls do not own a graphing calculator.
3. Use the definition of conditional probability to find the probability that a student is a girl given that they do not own a graphing calculator. The formula for conditional probability is given by:
[tex]\[ P(\text{Girl} | \text{No Calculator}) = \frac{\text{Number of girls who do not own a calculator}}{\text{Total number of students who do not own a calculator}} \][/tex]
4. Substitute the values from the table into the formula:
[tex]\[ P(\text{Girl} | \text{No Calculator}) = \frac{6}{13} \][/tex]
5. Now we'll express this probability as a fraction and also convert it to a decimal form. Since [tex]\(\frac{6}{13}\)[/tex] is already in its simplest form:
- The fractional form is: [tex]\(\frac{6}{13}\)[/tex]
6. For completeness, let's write it as a decimal as well:
[tex]\[ P(\text{Girl} | \text{No Calculator}) \approx 0.46153846153846156 \][/tex]
Thus, the probability that a randomly chosen student will be a girl given that the student does not own a graphing calculator is:
[tex]\[ \boxed{\frac{6}{13}} \approx 0.4615 \][/tex] (rounded to four decimal places).
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.