Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's determine whether the statement about the median of the given numbers is true or false.
### Step-by-Step Solution:
1. List of Given Numbers:
The given numbers are 3 and 12.
2. Sorting the Numbers:
First, we sort the list of numbers:
- Sorted List: [3, 12]
3. Finding the Median:
- To determine the median, we need to consider the number of elements in the list.
- The list has an even number of elements (two elements).
- For an even number of elements, the median is the average of the two middle numbers.
[tex]\[ \text{Median} = \frac{\text{First Middle Number} + \text{Second Middle Number}}{2} \][/tex]
- Here, the first middle number is [tex]\(3\)[/tex] and the second middle number is [tex]\(12\)[/tex].
Therefore,
[tex]\[ \text{Median} = \frac{3 + 12}{2} = \frac{15}{2} = 7.5 \][/tex]
4. Comparison with the Given Median:
- The given median is [tex]\(16\)[/tex].
- The calculated median is [tex]\(7.5\)[/tex].
5. Conclusion:
The calculated median ([tex]\(7.5\)[/tex]) does not match the given median ([tex]\(16\)[/tex]). Therefore, the statement is false.
### Final Answer:
The statement "The median of this distribution is 16" is false. The correct median of the distribution is [tex]\(7.5\)[/tex].
### Step-by-Step Solution:
1. List of Given Numbers:
The given numbers are 3 and 12.
2. Sorting the Numbers:
First, we sort the list of numbers:
- Sorted List: [3, 12]
3. Finding the Median:
- To determine the median, we need to consider the number of elements in the list.
- The list has an even number of elements (two elements).
- For an even number of elements, the median is the average of the two middle numbers.
[tex]\[ \text{Median} = \frac{\text{First Middle Number} + \text{Second Middle Number}}{2} \][/tex]
- Here, the first middle number is [tex]\(3\)[/tex] and the second middle number is [tex]\(12\)[/tex].
Therefore,
[tex]\[ \text{Median} = \frac{3 + 12}{2} = \frac{15}{2} = 7.5 \][/tex]
4. Comparison with the Given Median:
- The given median is [tex]\(16\)[/tex].
- The calculated median is [tex]\(7.5\)[/tex].
5. Conclusion:
The calculated median ([tex]\(7.5\)[/tex]) does not match the given median ([tex]\(16\)[/tex]). Therefore, the statement is false.
### Final Answer:
The statement "The median of this distribution is 16" is false. The correct median of the distribution is [tex]\(7.5\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.