At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the equation of the line perpendicular to [tex]\( y = -\frac{1}{2}x - 5 \)[/tex] that passes through the point [tex]\( (2, 7) \)[/tex], follow these steps:
1. Identify the slope of the given line: The given line is in slope-intercept form [tex]\( y = mx + b \)[/tex]. Here, [tex]\( m = -\frac{1}{2} \)[/tex].
2. Find the slope of the perpendicular line: For a line to be perpendicular to another, its slope must be the negative reciprocal of the original slope. The negative reciprocal of [tex]\( -\frac{1}{2} \)[/tex] is 2.
Therefore, the slope of the perpendicular line is [tex]\( m = 2 \)[/tex].
3. Use the slope-intercept form equation [tex]\( y = mx + b \)[/tex]: We now have the slope [tex]\( m = 2 \)[/tex] and need to find the y-intercept [tex]\( b \)[/tex]. We will use the point [tex]\( (2, 7) \)[/tex] which the line passes through.
4. Substitute the point into the equation: Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex] into the slope-intercept form equation to solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 2(2) + b \][/tex]
5. Solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 4 + b \][/tex]
[tex]\[ b = 3 \][/tex]
6. Write the equation of the line: Now that we have the slope [tex]\( m = 2 \)[/tex] and the y-intercept [tex]\( b = 3 \)[/tex], the equation of the line is:
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation of the line perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] that passes through the point [tex]\( (2, 7) \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]
1. Identify the slope of the given line: The given line is in slope-intercept form [tex]\( y = mx + b \)[/tex]. Here, [tex]\( m = -\frac{1}{2} \)[/tex].
2. Find the slope of the perpendicular line: For a line to be perpendicular to another, its slope must be the negative reciprocal of the original slope. The negative reciprocal of [tex]\( -\frac{1}{2} \)[/tex] is 2.
Therefore, the slope of the perpendicular line is [tex]\( m = 2 \)[/tex].
3. Use the slope-intercept form equation [tex]\( y = mx + b \)[/tex]: We now have the slope [tex]\( m = 2 \)[/tex] and need to find the y-intercept [tex]\( b \)[/tex]. We will use the point [tex]\( (2, 7) \)[/tex] which the line passes through.
4. Substitute the point into the equation: Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex] into the slope-intercept form equation to solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 2(2) + b \][/tex]
5. Solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 4 + b \][/tex]
[tex]\[ b = 3 \][/tex]
6. Write the equation of the line: Now that we have the slope [tex]\( m = 2 \)[/tex] and the y-intercept [tex]\( b = 3 \)[/tex], the equation of the line is:
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation of the line perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] that passes through the point [tex]\( (2, 7) \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.