At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the domain of the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex], we need to understand where the denominator [tex]\(g(x)\)[/tex] is equal to zero, since division by zero is undefined.
1. Identify the functions:
- [tex]\(f(x) = x^2 - 25\)[/tex]
- [tex]\(g(x) = x - 5\)[/tex]
2. Set the denominator [tex]\(g(x)\)[/tex] to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ g(x) = x - 5 \\ x - 5 = 0 \\ x = 5 \][/tex]
Therefore, [tex]\(g(x) = 0\)[/tex] when [tex]\(x = 5\)[/tex].
3. Determine the domain:
- The domain of [tex]\(\left( \frac{f}{g} \right)(x)\)[/tex] includes all real values of [tex]\(x\)[/tex] except where [tex]\(g(x) = 0\)[/tex], which happens at [tex]\(x = 5\)[/tex].
- As [tex]\(g(5) = 0\)[/tex], [tex]\(\left(\frac{f}{g}\right)(5)\)[/tex] is undefined, and thus [tex]\(x = 5\)[/tex] must be excluded from the domain.
4. Conclusion:
The domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex].
Hence, the correct domain is:
- all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex]
1. Identify the functions:
- [tex]\(f(x) = x^2 - 25\)[/tex]
- [tex]\(g(x) = x - 5\)[/tex]
2. Set the denominator [tex]\(g(x)\)[/tex] to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ g(x) = x - 5 \\ x - 5 = 0 \\ x = 5 \][/tex]
Therefore, [tex]\(g(x) = 0\)[/tex] when [tex]\(x = 5\)[/tex].
3. Determine the domain:
- The domain of [tex]\(\left( \frac{f}{g} \right)(x)\)[/tex] includes all real values of [tex]\(x\)[/tex] except where [tex]\(g(x) = 0\)[/tex], which happens at [tex]\(x = 5\)[/tex].
- As [tex]\(g(5) = 0\)[/tex], [tex]\(\left(\frac{f}{g}\right)(5)\)[/tex] is undefined, and thus [tex]\(x = 5\)[/tex] must be excluded from the domain.
4. Conclusion:
The domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex].
Hence, the correct domain is:
- all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.