Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To write the equation representing the relationship between the number of days and the total charges for placing a classified ad, we will use the given data points and derive the equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
### Step-by-Step Solution:
1. Identify the Data Points:
The given data points are:
[tex]\[ (2, 8), (4, 13), (6, 18) \][/tex]
2. Calculate the Slope (m):
To find the slope ([tex]\(m\)[/tex]), we use two of the given data points. Let's use the points [tex]\((2, 8)\)[/tex] and [tex]\((4, 13)\)[/tex]:
[tex]\[ \text{Slope} (m) = \frac{\Delta y}{\Delta x} = \frac{13 - 8}{4 - 2} = \frac{5}{2} = 2.5 \][/tex]
3. Determine the Intercept (b):
Using the slope and one of the points (let's use [tex]\((2, 8)\)[/tex]), we can find the y-intercept ([tex]\(b\)[/tex]) by plugging the values into the slope-intercept form equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ 8 = 2.5 \cdot 2 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ 8 = 5 + b \\ b = 8 - 5 \\ b = 3 \][/tex]
4. Formulate the Equation:
With the slope [tex]\(m = 2.5\)[/tex] and the y-intercept [tex]\(b = 3\)[/tex], the equation in slope-intercept form is:
[tex]\[ y = 2.5x + 3 \][/tex]
### Conclusion:
The equation representing the relationship between the number of days (x) and the total charges (y) for placing a classified ad is:
[tex]\[ y = 2.5x + 3 \][/tex]
This equation implies that the newspaper charges a flat fee of [tex]$3.00, plus an additional $[/tex]2.50 per day for the ad.
### Step-by-Step Solution:
1. Identify the Data Points:
The given data points are:
[tex]\[ (2, 8), (4, 13), (6, 18) \][/tex]
2. Calculate the Slope (m):
To find the slope ([tex]\(m\)[/tex]), we use two of the given data points. Let's use the points [tex]\((2, 8)\)[/tex] and [tex]\((4, 13)\)[/tex]:
[tex]\[ \text{Slope} (m) = \frac{\Delta y}{\Delta x} = \frac{13 - 8}{4 - 2} = \frac{5}{2} = 2.5 \][/tex]
3. Determine the Intercept (b):
Using the slope and one of the points (let's use [tex]\((2, 8)\)[/tex]), we can find the y-intercept ([tex]\(b\)[/tex]) by plugging the values into the slope-intercept form equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ 8 = 2.5 \cdot 2 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ 8 = 5 + b \\ b = 8 - 5 \\ b = 3 \][/tex]
4. Formulate the Equation:
With the slope [tex]\(m = 2.5\)[/tex] and the y-intercept [tex]\(b = 3\)[/tex], the equation in slope-intercept form is:
[tex]\[ y = 2.5x + 3 \][/tex]
### Conclusion:
The equation representing the relationship between the number of days (x) and the total charges (y) for placing a classified ad is:
[tex]\[ y = 2.5x + 3 \][/tex]
This equation implies that the newspaper charges a flat fee of [tex]$3.00, plus an additional $[/tex]2.50 per day for the ad.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.