Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the year in which China's exports of automobiles and parts reached [tex]$6.1$[/tex] billion dollars, we start by using the given function [tex]\( f(x) = 1.8208 \cdot e^{0.3387x} \)[/tex], where [tex]\( x \)[/tex] is the number of years since 1998.
We are asked to find the value of [tex]\( x \)[/tex] when [tex]\( f(x) = 6.1 \)[/tex]. Thus, we can set up the equation:
[tex]\[ 6.1 = 1.8208 \cdot e^{0.3387x} \][/tex]
First, isolate the exponential term by dividing both sides of the equation by 1.8208:
[tex]\[ \frac{6.1}{1.8208} = e^{0.3387x} \][/tex]
Next, compute the value of the left side:
[tex]\[ \frac{6.1}{1.8208} \approx 3.3493 \][/tex]
Now, we have:
[tex]\[ 3.3493 = e^{0.3387x} \][/tex]
To solve for [tex]\( x \)[/tex], take the natural logarithm (ln) of both sides:
[tex]\[ \ln(3.3493) = \ln(e^{0.3387x}) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^a) = a\)[/tex], this simplifies to:
[tex]\[ \ln(3.3493) = 0.3387x \][/tex]
Next, solve for [tex]\( x \)[/tex] by dividing both sides by 0.3387:
[tex]\[ x = \frac{\ln(3.3493)}{0.3387} \approx 3.5696 \][/tex]
Since [tex]\( x \)[/tex] represents the number of years after 1998, the year when the exports reach [tex]$6.1 billion dollars is given by: \[ 1998 + x = 1998 + 3.5696 \approx 2001.5696 \] To find the nearest year: \[ 2001.5696 \approx 2002 \] Thus, China's exports of automobiles and parts reached $[/tex]6.1 billion dollars around the year [tex]\(\boxed{2002}\)[/tex].
We are asked to find the value of [tex]\( x \)[/tex] when [tex]\( f(x) = 6.1 \)[/tex]. Thus, we can set up the equation:
[tex]\[ 6.1 = 1.8208 \cdot e^{0.3387x} \][/tex]
First, isolate the exponential term by dividing both sides of the equation by 1.8208:
[tex]\[ \frac{6.1}{1.8208} = e^{0.3387x} \][/tex]
Next, compute the value of the left side:
[tex]\[ \frac{6.1}{1.8208} \approx 3.3493 \][/tex]
Now, we have:
[tex]\[ 3.3493 = e^{0.3387x} \][/tex]
To solve for [tex]\( x \)[/tex], take the natural logarithm (ln) of both sides:
[tex]\[ \ln(3.3493) = \ln(e^{0.3387x}) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^a) = a\)[/tex], this simplifies to:
[tex]\[ \ln(3.3493) = 0.3387x \][/tex]
Next, solve for [tex]\( x \)[/tex] by dividing both sides by 0.3387:
[tex]\[ x = \frac{\ln(3.3493)}{0.3387} \approx 3.5696 \][/tex]
Since [tex]\( x \)[/tex] represents the number of years after 1998, the year when the exports reach [tex]$6.1 billion dollars is given by: \[ 1998 + x = 1998 + 3.5696 \approx 2001.5696 \] To find the nearest year: \[ 2001.5696 \approx 2002 \] Thus, China's exports of automobiles and parts reached $[/tex]6.1 billion dollars around the year [tex]\(\boxed{2002}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.