At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, let's examine the slopes of each line. Lines are parallel if and only if they have the same slope.
1. Line 1: [tex]\(y = -3x + 10\)[/tex]
- This equation is already in slope-intercept form [tex]\(y = mx + b\)[/tex], where the slope [tex]\(m\)[/tex] is -3.
2. Line 2: [tex]\(y = \frac{2}{5}x - 8\)[/tex]
- This equation is also in slope-intercept form with the slope [tex]\(m\)[/tex] being [tex]\(\frac{2}{5}\)[/tex].
3. Line 3: [tex]\(-5x + 2y = -16\)[/tex]
- We need to convert this to slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ 2y = 5x - 16 \][/tex]
[tex]\[ y = \frac{5}{2}x - 8 \][/tex]
- Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{5}{2}\)[/tex].
4. Line 4: [tex]\(2x - 5y = 30\)[/tex]
- Convert this to slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ -5y = -2x + 30 \][/tex]
[tex]\[ y = \frac{2}{5}x - 6 \][/tex]
- Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{2}{5}\)[/tex].
5. Line 5: [tex]\(6x + 2y = -10\)[/tex]
- Convert this to slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ 2y = -6x - 10 \][/tex]
[tex]\[ y = -3x - 5 \][/tex]
- Here, the slope [tex]\(m\)[/tex] is -3.
Now let's list our slopes:
- Line 1: [tex]\(-3\)[/tex]
- Line 2: [tex]\(\frac{2}{5}\)[/tex]
- Line 3: [tex]\(\frac{5}{2}\)[/tex]
- Line 4: [tex]\(\frac{2}{5}\)[/tex]
- Line 5: [tex]\(-3\)[/tex]
From this, we observe:
- Line 1 and Line 5 both have the slope [tex]\(-3\)[/tex], making them parallel.
- Line 2 and Line 4 both have the slope [tex]\(\frac{2}{5}\)[/tex], making them parallel.
Therefore, the lines that are parallel to each other are:
- Line 1 and Line 5
- Line 2 and Line 4
1. Line 1: [tex]\(y = -3x + 10\)[/tex]
- This equation is already in slope-intercept form [tex]\(y = mx + b\)[/tex], where the slope [tex]\(m\)[/tex] is -3.
2. Line 2: [tex]\(y = \frac{2}{5}x - 8\)[/tex]
- This equation is also in slope-intercept form with the slope [tex]\(m\)[/tex] being [tex]\(\frac{2}{5}\)[/tex].
3. Line 3: [tex]\(-5x + 2y = -16\)[/tex]
- We need to convert this to slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ 2y = 5x - 16 \][/tex]
[tex]\[ y = \frac{5}{2}x - 8 \][/tex]
- Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{5}{2}\)[/tex].
4. Line 4: [tex]\(2x - 5y = 30\)[/tex]
- Convert this to slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ -5y = -2x + 30 \][/tex]
[tex]\[ y = \frac{2}{5}x - 6 \][/tex]
- Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{2}{5}\)[/tex].
5. Line 5: [tex]\(6x + 2y = -10\)[/tex]
- Convert this to slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ 2y = -6x - 10 \][/tex]
[tex]\[ y = -3x - 5 \][/tex]
- Here, the slope [tex]\(m\)[/tex] is -3.
Now let's list our slopes:
- Line 1: [tex]\(-3\)[/tex]
- Line 2: [tex]\(\frac{2}{5}\)[/tex]
- Line 3: [tex]\(\frac{5}{2}\)[/tex]
- Line 4: [tex]\(\frac{2}{5}\)[/tex]
- Line 5: [tex]\(-3\)[/tex]
From this, we observe:
- Line 1 and Line 5 both have the slope [tex]\(-3\)[/tex], making them parallel.
- Line 2 and Line 4 both have the slope [tex]\(\frac{2}{5}\)[/tex], making them parallel.
Therefore, the lines that are parallel to each other are:
- Line 1 and Line 5
- Line 2 and Line 4
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.